Cộng đồng chia sẻ tri thức Lib24.vn

§1. Bất đẳng thức

Lý thuyết
Mục lục
* * * * *

Bài 2 (SGK trang 79)

Cho \(x>5\), số nào trong các số sau đây là số nhỏ nhất ?

\(A=\dfrac{5}{x}\);                 \(B=\dfrac{5}{x}+1\);               \(C=\dfrac{5}{x}-1\);                            \(D=\dfrac{x}{5}\)

Hướng dẫn giải

Ta có: A=1>\(\dfrac{5}{x}\)> 0(vì x>5)(1)

B= \(\dfrac{5}{x}\)+1=\(\dfrac{5+x}{x}\)>1(2)

C= \(\dfrac{5}{x}\)-1=\(\dfrac{5-x}{x}\) < 0(3)

D=\(\dfrac{x}{5}\)>1(4)

Từ(1),(2),(3),(4):

Ta thấy đáp án C là đáp án duy nhất bé hơn không nên đáp án C= \(\dfrac{5}{x}\)-1 là đáp án có số nhỏ nhất.

Bài 3 (SGK trang 79)

Cho a, b, c là độ dài 3 cạnh của một tam giác

a. Chứng minh \(\left(b-c\right)^2< a^2\)

b. Từ đó suy ra : \(a^2+b^2+c^2< 2\left(ab+bc+ca\right)\)

Hướng dẫn giải

a)Ta có BĐT tam giác :

\(\left\{{}\begin{matrix}a+b>c\\a+c>b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a+b-c>0\\a+c-b>0\end{matrix}\right.\)

\(\Rightarrow\left[a+\left(b+c\right)\right]\left[a-\left(b-c\right)\right]>0\)

\(\Rightarrow a^2-\left(b-c\right)^2>0\Rightarrow a^2>\left(b-c\right)^2\)

b)Áp dụng BĐT ở câu a ta có:

\(a^2+b^2+c^2>\left(b-c\right)^2+\left(a-c\right)^2+\left(a-b\right)^2\)

\(\Leftrightarrow a^2+b^2+c^2>b^2+c^2-2bc+a^2+c^2-2ac+a^2+b^2-2ab\)

\(\Leftrightarrow2ab+2bc+2ca>2a^2+2b^2+2c^2\)

\(\Leftrightarrow ab+bc+ca>a^2+b^2+c^2\)

Bài 4 (SGK trang 79)

Chứng minh rằng :

                 \(x^3+y^3\ge x^2y+xy^2,\forall\ge0,\forall y\ge0\)

Hướng dẫn giải

\(x^3+y^3\ge x^2y+xy^2\forall x,y\ge0\left(1\right)\)

*) Xét \(x=y=0\) thì \(\left(1\right)\) luôn đúng

*) Xét \(x,y>0\) ta có: \(VT=x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)\)

Áp dụng BĐT AM-GM ta có:

\(x^2+y^2\ge2xy\Rightarrow x^2-xy+y^2\ge2xy-xy=xy\)

\(\Rightarrow VT=\left(x+y\right)\left(x^2-xy+y^2\right)\ge xy\left(x+y\right)\left(2\right)\)

Lại có: \(VP=x^2y+xy^2=xy\left(x+y\right)\left(3\right)\)

Từ \(\left(2\right)\)\(\left(3\right)\) suy ra BĐT được chứng minh

Vậy \(x^3+y^3\ge x^2y+xy^2\forall x,y\ge0\)

Bài 5 (SGK trang 79)

Chứng minh rằng :

                       \(x^4-\sqrt{x^5}+x-\sqrt{x}+1>0,\forall\ge0\)

Hướng dẫn : Đặt \(\sqrt{x}=t\), xét hai trường hợp : \(0\le x< 1;x\ge1\)

Hướng dẫn giải

Đặt \(\sqrt{x}=t\left(t\ge0\right)\) ta có:

\(f\left(t\right)=t^8-t^5+t^2-t+1\)

*)Với \(t=0;t=1\Rightarrow f\left(t\right)=1>\)

*)Với \(0\le t< 1\) thì \(f\left(t\right)=t^8+\left(t^2-t^5\right)+1-t\)

\(\left\{{}\begin{matrix}t^8>0\\1-t>0\\t^2-t^5=t^3\left(1-t\right)>0\end{matrix}\right.\)\(\Rightarrow f\left(t\right)>0\)

*)Với \(t\ge1\) thì \(f\left(t\right)=t^5\left(t^3-1\right)+t\left(t-1\right)+1>0\)

Vậy \(f\left(t\right)>0\forall t\ge0\Rightarrow x^4-\sqrt{x^5}+x-\sqrt{x}+1>0\forall x\ge0\)

Bài 6 (SGK trang 79)

Trong mặt phẳng tọa độ Oxy, trên các tia Ox và Oy lần lượt lấy các điểm A và B thay đổi sao cho đường thẳng AB luôn tiếp xúc với đường tròn tâm O bán kính 1. Xác định tọa độ của A và B để đoạn AB có độ dài nhỏ nhất

Hướng dẫn giải

Ta có : HA.HB=OH²=1 (không đổi).
và AB=HA+HB ≥ 2√(HA.HB) = 2.√OH² = 2.
-> AB ≥ 2.
Vậy AB có độ dài nhỏ nhất là 2 khi HA=HB
Khi đó tg OHB và OHA vuông cân và có cạnh góc vuông = 1.
suy ra OA = OB =√2.
Vậy đoạn AB nhỏ nhất khi A(√2;0) B(0;√2).

Bài 1 (SBT trang 106)

Cho x, y, z là những số thực tùy ý.

Chứng minh rằng :

                       \(x^4+y^4\ge x^3y+xy^3\)

Hướng dẫn giải

\(x^3y+xy^3=xy\left(x^2+y^2\right)\le\dfrac{\left(x^2+y^2\right)}{2}\left(x^2+y^2\right)\)\(=\dfrac{\left(x^2+y^2\right)^2}{2}\).
Áp dụng bất đẳng thức: \(a^2+b^2\ge\dfrac{\left(a+b\right)^2}{2}\) ta suy ra:\(x^4+y^4\ge\dfrac{\left(x^2+y^2\right)^2}{2}\).
Theo tính chất bắc cầu của bất đẳng thức ta suy ra:
\(x^4+y^4\ge x^3y+xy^3\).

Bài 2 (SBT trang 106)

Cho x, y, z là những số thực tùy ý.

Chứng minh rằng :

              \(x^2+4y^2+3z^2+14>2x+12y+6z\)

Hướng dẫn giải

Giả sử: \(x^2+4y^2+3z^2+14>2x+12y+6x\)
\(\Leftrightarrow\left(x^2-2x+1\right)+\left(4y^2-12y+9\right)+3\left(z^2-2x+1\right)+1\)> 0
\(\Leftrightarrow\left(x-1\right)^2+\left(2y-3\right)^2+3\left(z-1\right)^2+1>0\) (luôn đúng).
Suy ra: \(x^2+4y^2+3z^2+14>2x+12y+6x\).

Bài 3 (SBT trang 106)

Cho a, b, c, d là những số dương. 

Chứng minh rằng :             

                 \(\dfrac{a}{\sqrt{b}}+\dfrac{b}{\sqrt{a}}\ge\sqrt{a}+\sqrt{b}\)

Hướng dẫn giải

Ta có: \(\dfrac{a}{\sqrt{b}}+\dfrac{b}{\sqrt{a}}\)\(\Leftrightarrow\dfrac{a\sqrt{a}+b\sqrt{b}}{\sqrt{a}\sqrt{b}}\).
Giả sử: \(\dfrac{a}{\sqrt{b}}+\dfrac{b}{\sqrt{a}}\ge\sqrt{a}+\sqrt{b}\)\(\Leftrightarrow\dfrac{a\sqrt{a}+b\sqrt{b}}{\sqrt{ab}}\ge\sqrt{a}+\sqrt{b}\)
\(\Leftrightarrow a\sqrt{a}+b\sqrt{b}=\left(\sqrt{a}+\sqrt{b}\right)\sqrt{ab}\)
\(\Leftrightarrow\left(\sqrt{a}+\sqrt{b}\right)\left(a+b-\sqrt{ab}\right)\ge\left(\sqrt{a}+\sqrt{b}\right)\sqrt{ab}\)
\(\Leftrightarrow a+b-\sqrt{ab}\ge\sqrt{ab}\)\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\) (Luôn đúng).
Vì vậy: \(\dfrac{a}{\sqrt{b}}+\dfrac{b}{\sqrt{a}}\ge\sqrt{a}+\sqrt{b}\).

Bài 4 (SBT trang 106)

Cho a, b, c, d là những số dương. 

Chứng minh rằng :

                      \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\)

Hướng dẫn giải

Giả sử: \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\)\(\Leftrightarrow\dfrac{a+b}{ab}\ge\dfrac{4}{a+b}\)\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)
\(\Leftrightarrow a^2+b^2\ge2ab\)\(\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng).
Vì vậy: \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\).

Bài 5 (SBT trang 106)

Cho a, b, c, d là những số dương.

Chứng minh rằng :

         \(\dfrac{a+b+c+d}{4}\ge\sqrt[4]{abcd}\)

Hướng dẫn giải

Áp dụng bất đẳng thức Cauchy cho 2 bộ số thực không âm

\(\Rightarrow\left\{{}\begin{matrix}a+b\ge2\sqrt{ab}\\c+d\ge2\sqrt{cd}\end{matrix}\right.\)

\(\Rightarrow a+b+c+d\ge2\left(\sqrt{ab}+\sqrt{cd}\right)\)

\(\Rightarrow\dfrac{a+b+c+d}{4}\ge\dfrac{\sqrt{ab}+\sqrt{cd}}{2}\) (1)

Áp dụng bất đẳng thức Cauchy cho 2 bộ số thực không âm

\(\Rightarrow\sqrt{ab}+\sqrt{cd}\ge2\sqrt{\sqrt{abcd}}=2\sqrt[4]{abcd}\)

\(\Rightarrow\dfrac{\sqrt{ab}+\sqrt{cd}}{2}\ge\dfrac{2\sqrt[4]{abcd}}{2}=\sqrt[4]{abcd}\) (2)

Từ (1) và (2)

\(\Rightarrow\dfrac{a+b+c+d}{4}\ge\dfrac{\sqrt{ab}+\sqrt{cd}}{2}\ge\sqrt[4]{abcd}\)

\(\Rightarrow\dfrac{a+b+c+d}{4}\ge\sqrt[4]{abcd}\) ( đpcm )

Dấu " = " xảy ra khi \(a=b=c=d\)

Bài 6 (SBT trang 106)

Cho a, b, c, d là những số dương. 

Chứng minh rằng :

                 \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{d}\ge\dfrac{16}{a+b+c+d}\)

Hướng dẫn giải

Áp dụng bất đẳng thức Cauchy - Schwarz dạng phân thức

\(\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{d}\ge\dfrac{\left(1+1+1+1\right)^2}{a+b+c+d}=\dfrac{16}{a+b+c+d}\) ( đpcm )

Dấu " = " xảy ra khi \(a=b=c\)

Bài 7 (SBT trang 106)

Cho a, b, c, d là những số dương. 

Chứng minh rằng :

           \(a^2b+\dfrac{1}{b}\ge2a\)

Hướng dẫn giải

Áp dụng bất đẳng thức cô si ta có:

\(a^2b+\dfrac{1}{b}\ge2\sqrt{a^2b\times\dfrac{1}{b}}=2a\)

Dấu "=" xảy ra khi:\(a^2b=\dfrac{1}{b}\Leftrightarrow a^2b^2=1\Leftrightarrow ab=1\)

Vậy a^2b+1/b\(\ge2a\)

Bài 8 (SBT trang 106)

Cho a, b, c, d là những số dương. 

Chứng minh rằng :

                    \(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\)

Hướng dẫn giải

Áp dụng bất đẳng thức Cauchy - Schwarz

\(\Rightarrow\left\{{}\begin{matrix}a+b\ge2\sqrt{ab}\\b+c\ge2\sqrt{bc}\\c+a\ge2\sqrt{ca}\end{matrix}\right.\)

\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge2\sqrt{ab}.2\sqrt{bc}.2\sqrt{ca}\)

\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\) ( đpcm )

Dấu " = " xảy ra khi \(a=b=c=1\)

Bài 9 (SBT trang 106)

Cho a, b, c, d là những số dương. 

Chứng minh rằng : 

                     \(\left(\sqrt{a}+\sqrt{b}\right)^2\ge2\sqrt{2\left(a+b\right)\sqrt{ab}}\)

 

 

 

 

 

 

 

Hướng dẫn giải

Ta có: \(2\sqrt{2\left(a+b\right)\sqrt{ab}}=2\sqrt{\left(a+b\right).2\sqrt{ab}}\)
\(\le\sqrt{\left(a+b\right)\left(a+b\right)}=a+b\) (do a, b dương).
Mặt khác \(\left(\sqrt{a}+\sqrt{b}\right)^2=a+b+2\sqrt{ab}\ge a+b\).
Vì vậy theo tính chất bắc cầu ta có:
\(\left(\sqrt{a}+\sqrt{b}\right)^2\ge2\sqrt{2\left(a+b\right)\sqrt{ab}}\).

Bài 10 (SBT trang 106)

Cho a, b, c, d là những số dương.

Chứng minh rằng :

                    \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{9}{a+b+c}\)

Hướng dẫn giải

Áp dụng bất đẳng thức Cauchy - Schwarz dạng phân thức

\(\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{\left(1+1+1\right)^2}{a+b+c}=\dfrac{9}{a+b+c}\)

Dấu " = " xảy ra khi \(a=b=c=1\)

Bài 11 (SBT trang 106)

Cho x, y, z là những số thực tùy ý.

Tìm giá trị nhỏ nhất của hàm số :

                  \(y=\dfrac{4}{x}+\dfrac{9}{1-x}\) với \(0< x< 1\)

Hướng dẫn giải

\(y=\dfrac{4\left(x+1-1\right)}{x}+\dfrac{9\left(x+1-x\right)}{1-x}\)

\(=4+9+\dfrac{4\left(1-x\right)}{x}+9\dfrac{x}{1-x}\ge13+2\sqrt{4\dfrac{\left(1-x\right)}{x}.9\dfrac{x}{1-x}}=25\)

\(\Rightarrow y\ge25,\forall x\in\left(0;1\right)\)

Đẳng thức \(y=25\) xảy ra khi và chỉ khi

\(\left\{{}\begin{matrix}\dfrac{4\left(1-x\right)}{x}=\dfrac{9x}{1-x}=6\\x\in\left(0;1\right)\end{matrix}\right.\)

Hay \(x=\dfrac{2}{5}\)

Vậy giá trị nhỏ nhất của hàm số đã cho bằng 25 đặt tại \(x=\dfrac{2}{5}\)

Bài 12 (SBT trang 106)

Cho x, y, z là những số thực tùy ý.

Tìm giá trị lớn nhất của hàm số \(y=4x^3-x^4\) với \(0\le x\le4\)

Hướng dẫn giải

Ta có: \(y=4x^3-x^4=x^3\left(4-x\right)=x.x.x.\left(4-x\right)\).
Vì vậy: \(3y=x.x.x.\left(12-4x\right)\).
Với \(0\le x\le4\) thì \(\left\{{}\begin{matrix}x\ge0\\12-4x\ge0\end{matrix}\right.\).
Áp dụng bất đẳng thức cô si cho bốn số: x,x,x, 12 - 3x ta có:
\(x.x.x.\left(12-3x\right)\le\left(\dfrac{x+x+x+12-3x}{4}\right)^4=81\).
Dấu bằng xảy ra khi: \(x=12-3x\)\(\Leftrightarrow4x=12\)\(\Leftrightarrow x=3\).
Như vậy: \(3y\le81\) \(\Leftrightarrow y\le27\) nên max của y bằng 27 khi x = 3.

Bài 13 (SBT trang 106)

Cho x, y, z là những số thực tùy ý. Tìm giá trị lớn nhất, nhỏ nhất của hàm số sau trên tập xác định của nó :

              \(y=\sqrt{x-1}+\sqrt{5-x}\)

Hướng dẫn giải

- Áp dụng BĐT Bunhia- Cốp xki ta có:
\(\left(\sqrt{x-1}+\sqrt{5-x}\right)^2\le\left(1^2+1^2\right)\left(x-1+5-x\right)\)\(=2.4=8\).
Suy ra: \(\sqrt{x-1}+\sqrt{5-x}\le2\sqrt{2}\).
Vậy max \(\sqrt{x-1}+\sqrt{5-x}=2\sqrt{2}\) khi:
\(\sqrt{x-1}=\sqrt{5-x}\)\(\Leftrightarrow x-1=5-x\)\(\Leftrightarrow x=3\).
- Ta có: \(\sqrt{x-1}+\sqrt{5-x}\ge\sqrt{x-1+5-x}=\sqrt{4}=2\).
Vậy GTNN của \(\sqrt{x-1}+\sqrt{5-x}=2\) khi:
\(\left[{}\begin{matrix}x-1=0\\5-x=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=5\end{matrix}\right.\).

Bài 14 (SBT trang 106)

Cho x, y, z là những số thực tùy ý.

Chứng minh rằng :

              \(\left|x-z\right|\le\left|x-y\right|+\left|y-z\right|,\forall x,y,z\)

Hướng dẫn giải

Lời giải

áp dụng

\(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) với \(\forall a,b\) đẳng thức khi ab>=0 nghĩa là a, b cùng "dấu"

\(VP=\left|x-y\right|+\left|y-z\right|\ge\left|\left(x-y\right)+\left(y-z\right)\right|=\left|x-z\right|=VT\)

\(\Rightarrow\left|x-z\right|\le\left|x-y\right|+\left|y-z\right|\)

Đẳng thức khi (x-y)(y-z)>=0

Có thể bạn quan tâm