Phương trình bậc hai một ẩn
Bài 11 (SGK trang 42)
Đưa các phương trình sau về dạng ax2 + bx + c = 0 và chỉ rõ các hệ số a, b, c:
a) 5x2 + 2x = 4 - x; b) \(\dfrac{3}{5}x^2+2x-7=3x+\dfrac{1}{2};\)
c) \(2x^2+x-\sqrt{3}=\sqrt{3}x+1;\)
d) \(2x^2+m^2=2\left(m-1\right)x,\) m là một hằng số.
Hướng dẫn giải
a) 5x2 + 2x = 4 – x ⇔ 5x2 + 3x – 4 = 0; a = 5, b = 3, c = -4
b) x2 + 2x – 7 = 3x +
⇔
x2 – x -
= 0, a =
, b = -1, c = -
c) 2x2 + x - √3 = √3 . x + 1 ⇔ 2x2 + (1 - √3)x – 1 - √3 = 0
Với a = 2, b = 1 - √3, c = -1 - √3
d) 2x2 + m2 = 2(m – 1)x ⇔ 2x2 - 2(m – 1)x + m2 = 0; a = 2, b = - 2(m – 1), c = m2
Bài 12 (SGK trang 42)
Giải các phương trình sau:
a) x2 - 8 = 0; b) 5x2 - 20 = 0; c) 0,4x2 + 1 = 0;
d) \(2x^2+\sqrt{2}x=0;\) e) -0,4x2 + 1,2x = 0.
Hướng dẫn giải
a) x2 – 8 = 0 ⇔ x2 = 8 ⇔ x = ±√8 ⇔ x = ±2√2
b) 5x2 – 20 = 0 ⇔ 5x2 = 20 ⇔ x2 = 4 ⇔ x = ±2
c) 0,4x2 + 1 = 0 ⇔ 0,4x2 = -1 ⇔ x2 = -: Vô nghiệm
d) 2x2 + √2x = 0 ⇔ x(2x + √2) = 0 ⇔ √2x(√2x + 1) = 0
⇔ x1 = 0 hoặc √2x + 1 = 0
Từ √2x + 1 = 0 => x2 =
Phương trình có 2 nghiệm
x1 = 0, x2 =
e) -0,4x2 + 1,2x = 0 ⇔ -4x2 + 12x = 0 ⇔ -4x(x – 3) = 0
⇔ x1 = 0,
hoặc x2 - 3 = 0 => x2 = 3
Vậy phương trình có 2 nghiệm x1 = 0, x2 = 3
Bài 13 (SGK trang 42)
Cho các phương trình :
a) x2 + 8x = -2; b) \(x^2+2x=\dfrac{1}{3}\)
Hãy cộng vào hai vế của mỗi phương trình trên cùng với một số thích hợp để được một phương trình mà vế trái thành một bình phương.
Hướng dẫn giải
a) \(x^2+8x=-2\)
\(\Rightarrow x^2+2.x.4+16=-2+16\)
\(\Rightarrow\left(x+4\right)^2=14\)
b) \(x^2+2x=\dfrac{1}{3}\)
\(\Rightarrow x^2+2x+1=\dfrac{1}{3}+1\)
\(\Rightarrow\left(x+1\right)^2=\dfrac{4}{3}\)
Bài 14 (SGK trang 43)
Hãy giải phương trình: 2x2 + 5x + 2 = 0 theo các bước như ví dụ 3 trong bài học.
Hướng dẫn giải
Bài giải
2x2 + 5x + 2 = 0 ⇔ 2x2 + 5x = -2 ⇔ x2 + x = -1
⇔ x2 + 2 . x . +
= -1 +
⇔ (x +
)2 =
=> x + =
=> x =
Hoặc x + =
=> x = -2.