Các trường hợp bằng nhau của tam giác vuông
Bài 63 (SGK tập 1 trang 136)
Cho tam giác ABC cân tại A. Kẻ AH vuông góc với BC \(\left(H\in BC\right)\). Chứng minh rằng :
a) HB = HC
b) \(\widehat{BAH}=\widehat{CAH}\)
Hướng dẫn giải
a) Hai tam giác vuông ABH và ACH có:
AB=AC(gt)
AH cạnh chung.
Nên ∆ABH=∆ACH(Cạnh huyền-cạnh góc vuông)
Suy ra HB=HC
b)∆ABH=∆ACH(Câu a)
Suy ra ^BAH=^CAH(Hai góc tương ứng)
Bài 64 (SGK tập 1 trang 136)
Các tam giác vuông ABC và DEF có \(\widehat{A}=\widehat{D}=90^0\). AC = DF. Hãy bổ sung thêm một điều kiện bằng nhau (về cạnh hay về góc) để \(\Delta ABC=\Delta DEF\) ?
Hướng dẫn giải
Các tam giác vuông ABC và DEF có . AC = DF. Hãy bổ sung thêm một điều kiện bằng nhau (về cạnh hay về góc) đểΔABC=ΔDEF?
Giải:
Xem hình vẽ
* Bổ sung thêm AB=DE
Thì ∆ABC=∆DEF (c.g.c)
* Bổ sung thêm =
Thì ∆ABC=∆DEF(g.c.g)
* Bổ sung thêm BC=EF
thì ∆ABC=∆DEF (cạnh huyền- cạnh góc vuông)
?
Bài 65 (SGK tập 1 trang 136)
Cho tam giác ABC cân tại A \(\left(\widehat{A}< 90^0\right)\). Vẽ \(BH\perp AC\left(H\in AC\right),CK\perp AB\left(K\in AB\right)\)
a) Chứng minh rằng AH = AK
b) Gọi I là giao điểm của BH và CK. Chứng minh rằng AI là phân giác của góc A
Hướng dẫn giải
a) Hai tam giác vuông ABH và ACK có:
AB = AC(gt)
Góc A chung.
nên ∆ABH = ∆ACK(Cạnh huyền- Góc nhọn)
suy ra AH = AK.
b) Hai tam giác vuông AIK và AIH có:
AK = AH(cmt)
AI cạnh chung
Nên ∆AIK = ∆AIH(cạnh huyền- cạnh góc vuông)
Suy ra ˆIAKIAK^=ˆIAHIAH^
Vậy AI là tia phân giác của góc A.
Bài 66 (SGK tập 1 trang 136)
Tìm tam giác bằng nhau trên hình 148 :
Hướng dẫn giải
Ta có: ∆AMD=∆AME(Cạnh huyền AM chung, góc nhọn^A1 = ^A2)
∆MDB=∆MEC(Cạnh huyền BM=CM, cạnh góc vuông.
MD=ME, do ∆AMD=∆AME)
∆AMB= ∆AMC(Cạnh AM chung),
Cạnh MB=MC, cạnh AB=AC
Vì AD=AE, DB=EC