Bài 1: Phương pháp quy nạp toán học
Bài 1.8 (Sách bài tập trang 100)
Chứng minh rằng với các số thực \(a_1,a_2,a_3,....,a_n\left(n\in N^{\circledast}\right)\), ta có :
\(\left|a_1+a_2+...+a_n\right|\le\left|a_a\right|+\left|a_1\right|+....+\left|a_n\right|\)
Hướng dẫn giải
Bài 1.6 (Sách bài tập trang 100)
Cho tổng :
\(S_n=\dfrac{1}{1.5}+\dfrac{1}{5.9}+\dfrac{1}{9.13}+....+\dfrac{1}{\left(4n-3\right)\left(4n+1\right)}\)
a) Tính \(S_1,S_2,S_3,S_4\)
b) Dự đoán công thức tính \(S_n\) và chứng minh bằng phương pháp quy nạp
Hướng dẫn giải
a)
\(S_1=\dfrac{1}{1.5}=\dfrac{1}{5}\)
\(S_2=\dfrac{1}{1.5}+\dfrac{1}{5.9}=\dfrac{1}{4}\left(\dfrac{1}{1}-\dfrac{1}{5}\right)+\dfrac{1}{4}\left(\dfrac{1}{5}-\dfrac{1}{9}\right)\)
\(=\dfrac{1}{4}\left(1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}\right)=\dfrac{1}{4}\left(1-\dfrac{1}{9}\right)=\dfrac{2}{9}\).
\(S_3=\dfrac{1}{1.5}+\dfrac{1}{5.9}+\dfrac{1}{9.13}=\dfrac{1}{4}\left(1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{13}\right)\)
\(=\dfrac{1}{4}\left(1-\dfrac{1}{13}\right)=\dfrac{3}{13}\).
\(S_4=\dfrac{1}{1.5}+\dfrac{1}{5.9}+\dfrac{1}{9.13}+\dfrac{1}{13.17}\)\(=\dfrac{1}{4}\left(1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{13}+\dfrac{1}{13}-\dfrac{1}{17}\right)\)
\(=\dfrac{1}{4}\left(1-\dfrac{1}{17}\right)=\dfrac{4}{17}\).
b) Dự đoán công thức : \(S_n=\dfrac{1}{4}\left(1-\dfrac{1}{4n+1}\right)\).
Chứng minh bằng quay nạp:
Với \(n=1\): \(S_1=\dfrac{1}{1.5}=\dfrac{1}{5}\).
Vậy giả thiết quy nạp đúng với n = 1.
Giả sử điều cần chứng minh đúng với \(n=k\).
Nghĩa là: \(S_k=\dfrac{1}{4}\left(1-\dfrac{1}{4k+1}\right)\).
Ta sẽ chứng minh nó đúng với \(n=k+1\): \(S_{k+1}=\dfrac{1}{4}\left(1-\dfrac{1}{4\left(k+1\right)+1}\right)\)
Thật vậy:
\(S_{k+1}=S_k+\dfrac{1}{\left[4\left(k+1\right)-3\right].\left[4\left(k+1\right)+1\right]}\)
\(=\dfrac{1}{4}\left(1-\dfrac{1}{4k+1}\right)+\dfrac{1}{4}\left(\dfrac{1}{4\left(k+1\right)-3}-\dfrac{1}{4\left(k+1\right)+1}\right)\)
\(=\dfrac{1}{4}\left(1-\dfrac{1}{4k+1}\right)+\dfrac{1}{4}\left(\dfrac{1}{4k+1}-\dfrac{1}{4\left(k+1\right)+1}\right)\)
\(=\dfrac{1}{4}\left(1-\dfrac{1}{4\left(k+1\right)+1}\right)\).
Vậy điều cần chứng minh đúng với mọi n.
Bài 1.2 (Sách bài tập trang 99)
Chứng minh các đẳng thức sau (với \(n\in N^{\circledast}\) )
a) \(1^2+3^2+5^2+.....+\left(2n-1\right)^2=\dfrac{n\left(4n^2-1\right)}{3}\)
b) \(1^3+2^3+3^3+.....+n^3=\dfrac{n^2\left(n+1\right)^2}{4}\)
Hướng dẫn giải
Bài 1.5 (Sách bài tập trang 100)
Với giá trị nào của số tự nhiên n ta có :
a) \(2^n< 2n+1\)
b) \(2^n>n^2+4n+5\)
c) \(3^n>2^n+7n\)?
Hướng dẫn giải
a)
Với \(n=1\) .
\(2^n=2^2=4;2n+1=2.2+1=5\).
Với n = 1 thì \(2^n< 2n+1\).
Với \(n=2\)
\(2^n=2^3=8;2n+1=2.3+1=7\)
Với n = 2 thì \(2^n>2n+1\).
Ta sẽ chứng minh bằng quy nạp giả thiết:
Với \(n\ge2\) thì \(2^n>2n+1\). (*)
Với n = 2 (*) đúng .
Giả sử điều cần chứng minh đúng với \(n=k\).
Nghĩa là: \(2^k>2k+1\).
Ta sẽ chứng minh nó cũng đúng với \(n=k+1\).
Nghĩa là: \(2^{k+1}>2\left(k+1\right)+1\).
Thật vậy từ giả thiết quy nạp ta có:
\(2^{k+1}=2.2^k>2.\left(2k+1\right)=4k+2>2\left(k+1\right)+1\) (với \(k\ge2\)).
Vậy điều phải chứng minh đúng với mọi n.
Bài 1.3 (Sách bài tập trang 100)
Chứng minh rằng với mọi \(n\in N^{\circledast}\), ta có :
a) \(2n^3-3n^2+n\) chia hết cho 6
b) \(11^{n+1}+12^{n-1}\) chia hết cho 133
Hướng dẫn giải
Phân tích nhân tử nhầm=>giải lại
\(A=2n^2-3n^2+n=n\left(2n^2-3n+1\right)=n\left(n-1\right)\left(2n+1\right)\)\(A=n\left(n-1\right)\left(2n+2-3\right)=\left[2n\left(n-1\right)\left(n+1\right)\right]-3\left(n\right)\left(n-1\right)=2B-3C\)
\(\left\{{}\begin{matrix}B⋮3\\C⋮2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}2B⋮6\\3C⋮3\end{matrix}\right.\) \(\Rightarrow A⋮6\) => dpcm
Bài 1.4 (Sách bài tập trang 100)
Chứng minh các bất đẳng thức sau \(\left(n\in N^{\circledast}\right)\):
a) \(2^{n+2}>2n+5\)
b) \(\sin^{2n}\alpha+\cos^{2n}\alpha\le1\)
Hướng dẫn giải
Bài 1.7 (Sách bài tập trang 100)
Cho n số thực \(a_1,a_2,...,a_n\) thỏa mãn điều kiện
\(-1< a_i\le0\) với \(i=\overline{1,n}\)
Chứng minh rằng với mọi \(n\in N^{\circledast}\) ta có
\(\left(1+a_1\right)\left(1+a_2\right)....\left(1+a_n\right)\ge1+a_1+a_2+...+a_n\)
Hướng dẫn giải
Bài 1.1 (Sách bài tập trang 99)
Chứng minh các đẳng thức sau (với \(n\in N^{\circledast}\))
a) \(2+5+8+...+\left(3n-1\right)=\dfrac{n\left(3n+1\right)}{2}\)
b) \(3+9+27+....+3^n=\dfrac{1}{2}\left(3^{n+1}-3\right)\)
Hướng dẫn giải
Đặt vế trái bằng \(S_n\).
Với n = 1. Vế trái chỉ có một số hạng bằng 2, vế phải bằng \(\dfrac{1.\left(3.1+1\right)}{2}=2\).
Vậy \(VP=VT\). Điều cần chứng minh đúng với n = 1.
Giả sử có \(S_k=\dfrac{k\left(3k+1\right)}{2}\). Ta phải chứng minh:
\(S_{k+1}=\dfrac{\left(k+1\right)\left[3\left(k+1\right)+1\right]}{2}=\dfrac{\left(k+1\right)\left(3k+4\right)}{2}\).
Thật vậy ta có:
\(S_{k+1}=S_k+\left[3\left(k+1\right)-1\right]\)\(=\dfrac{k\left(3k+1\right)}{2}+\left[3\left(k+1\right)-1\right]\)
\(=\dfrac{k\left(3k+1\right)}{2}+\dfrac{2\left(3k+2\right)}{2}\)\(=\dfrac{3k^2+7k+4}{2}=\dfrac{\left(k+1\right)\left(3k+4\right)}{ }\).
Vậy \(S_n=\dfrac{n\left(3n+1\right)}{2}\).