Cộng đồng chia sẻ tri thức Lib24.vn

Đề thi THPT QG Môn toán năm 2018 mã đề 122

6cbba7c59cf93a1c462eddb5ccfb5a38
Gửi bởi: Võ Hoàng 1 tháng 7 2018 lúc 6:31:40 | Được cập nhật: 8 giờ trước (11:21:49) Kiểu file: PDF | Lượt xem: 345 | Lượt Download: 0 | File size: 0 Mb

Nội dung tài liệu

Tải xuống
Link tài liệu:
Tải xuống

Các tài liệu liên quan


Có thể bạn quan tâm


Thông tin tài liệu

BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ THI CHÍNH THỨC (Đề thi có 05 trang) KỲ THI TRUNG HỌC PHỔ THÔNG QUỐC GIA NĂM 2018 Bài thi: TOÁN Thời gian làm bài: 90 phút, không kể thời gian phát đề Mã đề thi 122 Họ, tên thí sinh: ..................................................................... Số báo danh: .......................................................................... Câu 1: Diện tích xung quanh của hình trụ tròn xoay có bán kính đáy 𝑟 và độ dài đường sinh 𝑙 bằng 4 A. 4𝜋𝑟𝑙 . B. 𝜋𝑟𝑙 . D. 2𝜋𝑟𝑙 . C. 𝜋𝑟𝑙 . 3 Câu 2: Trong không gian 𝑂𝑥𝑦𝑧, mặt phẳng (𝑃) : 2𝑥 + 𝑦 + 3𝑧 − 1 = 0 có một vectơ pháp tuyến là A. → 𝑛 = (−1; 3; 2) . B. → 𝑛 = (2; 1; 3) . C. → 𝑛 = (3; 1; 2) . D. → 𝑛 = (1; 3; 2) . Câu 3: Từ các chữ số 1, 2, 3, 4, 5, 6, 7, 8 lập được bao nhiêu số tự nhiên gồm hai chữ số khác nhau ? A. 𝐶 . B. 𝐴 . C. 2 . D. 8 . Câu 4: Cho hình phẳng (𝐻) giới hạn bởi các đường 𝑦 = 𝑥 + 2, 𝑦 = 0, 𝑥 = 1, 𝑥 = 2. Gọi 𝑉 là thể tích của khối tròn xoay được tạo thành khi quay (𝐻) xung quanh trục 𝑂𝑥. Mệnh đề nào dưới đây đúng ? A. 𝑉 = (𝑥 + 2)d𝑥 . Câu 5: Phương trình 5 B. 𝑉 = 𝜋 (𝑥 + 2)d𝑥 . C. 𝑉 = (𝑥 + 2) d𝑥 . D. 𝑉 = 𝜋 (𝑥 + 2) d𝑥 . + = 125 có nghiệm là 5 A. 𝑥 = 3. C. 𝑥 = 1. B. 𝑥 = . 2 Câu 6: Cho hàm số 𝑦 = 𝑓(𝑥) có bảng biến thiên như sau D. 𝑥 = 3 . 2 Hàm số đã cho đồng biến trên khoảng nào dưới đây ? A. ( − 2; + ∞) . B. ( − ∞; − 2) . D. ( − 2; 3) . C. (3; + ∞) . 3 Câu 7: Với 𝑎 là số thực dương tùy ý, log bằng 𝑎 1 B. . A. 1 − log 𝑎 . C. 1 + log 𝑎 . D. 3 − log 𝑎 . log 𝑎 Câu 8: Cho khối lăng trụ có đáy là hình vuông cạnh 𝑎 và chiều cao bằng 2𝑎 . Thể tích của khối lăng trụ đã cho bằng 4 2 B. 4𝑎 . D. 2𝑎 . A. 𝑎 . C. 𝑎 . 3 3 𝑥= 1−𝑡 Câu 9: Trong không gian 𝑂𝑥𝑦𝑧, điểm nào dưới đây thuộc đường thẳng 𝑑: 𝑦 = 5 + 𝑡 ? A. 𝑀(1; 1; 3) . B. 𝑄( − 1; 1; 3) . C. 𝑁(1; 5; 2) . Câu 10: Nguyên hàm của hàm số 𝑓(𝑥) = 𝑥 + 𝑥 là 1 1 B. 𝑥 + 𝑥 + 𝐶 . C. 𝑥 + 𝑥 + 𝐶 . A. 𝑥 + 𝑥 + 𝐶 . 4 3 𝑧 = 2 + 3𝑡 D. 𝑃(1; 2; 5) . D. 3𝑥 + 2𝑥 + 𝐶 . Câu 11: Trong không gian 𝑂𝑥𝑦𝑧, mặt cầu (𝑆): (𝑥 − 5) + (𝑦 − 1) + (𝑧 + 2) = 3 có bán kính bằng A. 3. B. 2√3 . C. √3 . D. 9. Trang 1/5 - Mã đề thi 122 Câu 12: Đường cong trong hình vẽ bên là đồ thị của hàm số nào dưới đây ? A. 𝑦 = 𝑥 − 3𝑥 − 2. B. 𝑦 = − 𝑥 + 3𝑥 − 2. C. 𝑦 = 𝑥 − 𝑥 − 2. D. 𝑦 = − 𝑥 + 𝑥 − 2. Câu 13: Số phức có phần thực bằng 1 và phần ảo bằng 3 là A. −1 + 3𝑖 . B. 1 − 3𝑖 . C. 1 + 3𝑖 . Câu 14: Cho hàm số 𝑦 = 𝑎𝑥 + 𝑏𝑥 + 𝑐 (𝑎, 𝑏, 𝑐 ∈ ℝ) có đồ thị như hình vẽ bên. Số điểm cực trị của hàm số đã cho là A. 1. B. 0. C. 3. D. 2. Câu 15: lim D. −1 − 3𝑖 . 1 bằng 2𝑛 + 5 1 1 C. +∞ . D. 0. . B. . 2 5 Câu 16: Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1%/năm. Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ được nhập vào vốn để tính lãi cho năm tiếp theo. Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi ban đầu, giả định trong khoảng thời gian này lãi suất không thay đổi và người đó không rút tiền ra ? A. 12 năm. B. 13 năm. C. 10 năm. D. 11 năm. Câu 17: Trong không gian 𝑂𝑥𝑦𝑧, cho hai điểm 𝐴(5; − 4; 2) và 𝐵(1; 2; 4 ). Mặt phẳng đi qua 𝐴 và vuông góc với đường thẳng 𝐴𝐵 có phương trình là A. 3𝑥 − 𝑦 + 3𝑧 − 25 = 0. B. 2𝑥 − 3𝑦 − 𝑧 − 20 = 0. C. 2𝑥 − 3𝑦 − 𝑧 + 8 = 0. D. 3𝑥 − 𝑦 + 3𝑧 − 13 = 0. Câu 18: Cho hàm số 𝑦 = 𝑓(𝑥) liên tục trên đoạn [−2 ; 4] và có đồ thị như hình vẽ bên. Số nghiệm thực của phương trình 3𝑓(𝑥) − 5 = 0 trên đoạn [−2 ; 4] là A. 3. B. 1. C. 2. D. 0. A. Câu 19: Cho hình chóp 𝑆 . 𝐴𝐵𝐶 có 𝑆𝐴 vuông góc với mặt phẳng đáy, 𝐴𝐵 = 𝑎 và 𝑆𝐵 = 2𝑎 . Góc giữa đường thẳng 𝑆𝐵 và mặt phẳng đáy bằng B. 30 o . C. 60 o . D. 90 o . A. 45 o . Câu 20: Giá trị lớn nhất của hàm số 𝑦 = 𝑥 − 𝑥 + 13 trên đoạn [−1; 2] bằng 51 A. 13. B. 25. D. 85. C. . 4 Câu 21: Từ một hộp chứa 10 quả cầu màu đỏ và 5 quả cầu màu xanh, lấy ngẫu nhiên đồng thời 3 quả cầu. Xác suất để lấy được 3 quả cầu màu xanh bằng 1 24 2 12 A. . B. . C. . D. . 12 91 91 91 Câu 22: Cho hình chóp 𝑆 . 𝐴𝐵𝐶 có đáy là tam giác vuông cân tại 𝐶, 𝐵𝐶 = 𝑎, 𝑆𝐴 vuông góc với mặt phẳng đáy và 𝑆𝐴 = 𝑎 . Khoảng cách từ 𝐴 đến mặt phẳng (𝑆𝐵𝐶) bằng 𝑎 √2𝑎 √3𝑎 A. √2𝑎 . D. . B. . C. . 2 2 2 Câu 23: Tìm hai số thực 𝑥 và 𝑦 thỏa mãn (2𝑥 − 3𝑦𝑖) + (3 − 𝑖) = 5𝑥 − 4𝑖 với 𝑖 là đơn vị ảo. A. 𝑥 = 1; 𝑦 = 1. B. 𝑥 = 1; 𝑦 = − 1. C. 𝑥 = − 1; 𝑦 = 1. D. 𝑥 = − 1; 𝑦 = − 1. Trang 2/5 - Mã đề thi 122 Câu 24: A. 2ln d𝑥 bằng 2𝑥 + 3 7 . 5 B. 1 ln35. 2 C. ln Câu 25: Số tiệm cận đứng của đồ thị hàm số 𝑦 = A. 2. B. 0. 7 . 5 √𝑥 + 16 − 4 𝑥 +𝑥 C. 3. D. 1 7 ln . 2 5 là D. 1. Câu 26: Cho tứ diện 𝑂𝐴𝐵𝐶 có 𝑂𝐴, 𝑂𝐵, 𝑂𝐶 đôi một vuông góc với nhau, 𝑂𝐴 = 𝑎 và 𝑂𝐵 = 𝑂𝐶 = 2𝑎 . Gọi 𝑀 là trung điểm của 𝐵𝐶 . Khoảng cách giữa hai đường thẳng 𝑂𝑀 và 𝐴𝐵 bằng √6𝑎 √2𝑎 2√5𝑎 A. 𝑎 . B. . D. . C. . 3 2 5 Câu 27: Gọi 𝑆 là tập hợp tất cả các giá trị nguyên của tham số 𝑚 sao cho phương trình 9 − 𝑚.3 + + 3𝑚 − 75 = 0 có hai nghiệm phân biệt. Hỏi 𝑆 có bao nhiêu phần tử ? A. 5. B. 4. C. 8. D. 19. Câu 28: Ông A dự định sử dụng hết 5, 5 m kính để làm một bể cá bằng kính có dạng hình hộp chữ nhật không nắp, chiều dài gấp đôi chiều rộng (các mối ghép có kích thước không đáng kể). Bể cá có dung tích lớn nhất bằng bao nhiêu (kết quả làm tròn đến hàng phần trăm) ? A. 1, 51 m . B. 1, 01 m . C. 1, 40 m . D. 1, 17 m . Câu 29: Hệ số của 𝑥 trong khai triển biểu thức 𝑥(𝑥 − 2) + (3𝑥 − 1) bằng A. −13668. B. 13668. C. 13548. D. −13548. Câu 30: Một chiếc bút chì có dạng khối lăng trụ lục giác đều có cạnh đáy 3 mm và chiều cao 200 mm. Thân bút chì được làm bằng gỗ và phần lõi được làm bằng than chì. Phần lõi có dạng khối trụ có chiều cao bằng chiều dài của bút và đáy là hình tròn có bán kính 1 mm. Giả định 1 m gỗ có giá 𝑎 (triệu đồng), 1 m than chì có giá 7𝑎 (triệu đồng). Khi đó giá nguyên vật liệu làm một chiếc bút chì như trên gần nhất với kết quả nào dưới đây ? A. 8, 45 . 𝑎 (đồng). B. 9, 07 . 𝑎 (đồng). C. 84, 5 . 𝑎 (đồng). D. 90, 07 . 𝑎 (đồng). 𝑥 𝑦+1 𝑧−1 = = và mặt phẳng 1 2 1 (𝑃) : 𝑥 − 2𝑦 − 𝑧 + 3 = 0. Đường thẳng nằm trong (𝑃) đồng thời cắt và vuông góc với 𝛥 có phương trình là 𝑥= 1+𝑡 𝑥=1 𝑥= −3 𝑥 = 1 + 2𝑡 Câu 31: Trong không gian 𝑂𝑥𝑦𝑧, A. 𝑦 = 1 − 2𝑡 . 𝑧 = 2 + 3𝑡 cho đường thẳng 𝛥: B. 𝑦 = 1 − 𝑡 . 𝑧 = 2 + 2𝑡 C. 𝑦 = − 𝑡 . 𝑧 = 2𝑡 Câu 32: Có bao nhiêu giá trị nguyên của tham số 𝑚 để hàm số 𝑦 = ( − ∞; − 6) ? A. 6. B. 1. C. 2. D. 𝑦 = 1 − 𝑡 . 𝑧=2 𝑥+2 đồng biến trên khoảng 𝑥 + 3𝑚 D. Vô số. Câu 33: Cho (2 + 𝑥 ln 𝑥)d𝑥 = 𝑎𝑒 + 𝑏𝑒 + 𝑐 với 𝑎, 𝑏, 𝑐 là các số hữu tỉ. Mệnh đề nào dưới đây đúng ? A. 𝑎 − 𝑏 = 𝑐 . B. 𝑎 + 𝑏 = − 𝑐 . C. 𝑎 − 𝑏 = − 𝑐 . D. 𝑎 + 𝑏 = 𝑐 . Câu 34: Xét các số phức 𝑧 thỏa mãn (𝑧̅ ̅ − 2𝑖)(𝑧 + 2) là số thuần ảo. Trên mặt phẳng tọa độ, tập hợp tất cả các điểm biểu diễn các số phức 𝑧 là một đường tròn có bán kính bằng A. 4. D. 2. B. 2√2 . C. √2 . Trang 3/5 - Mã đề thi 122 Câu 35: Một chất điểm 𝐴 xuất phát từ 𝑂, chuyển động thẳng với vận tốc biến thiên theo thời gian bởi 1 58 quy luật 𝑣(𝑡) = 𝑡 + 𝑡 (m/s), trong đó 𝑡 (giây) là khoảng thời gian tính từ lúc 𝐴 bắt đầu 120 45 chuyển động. Từ trạng thái nghỉ, một chất điểm 𝐵 cũng xuất phát từ 𝑂, chuyển động thẳng cùng hướng với 𝐴 nhưng chậm hơn 3 giây so với 𝐴 và có gia tốc bằng 𝑎(m/s ) (𝑎 là hằng số). Sau khi 𝐵 xuất phát được 15 giây thì đuổi kịp 𝐴. Vận tốc của 𝐵 tại thời điểm đuổi kịp 𝐴 bằng A. 36(m/s) . B. 30(m/s) . C. 21(m/s) . D. 25(m/s) . Câu 36: Trong không gian 𝑂𝑥𝑦𝑧, cho mặt cầu (𝑆) : (𝑥 − 2) + (𝑦 − 3) + (𝑧 + 1) = 16 và điểm 𝐴( − 1; − 1; − 1) . Xét các điểm 𝑀 thuộc (𝑆) sao cho đường thẳng 𝐴𝑀 tiếp xúc với (𝑆), 𝑀 luôn thuộc mặt phẳng có phương trình là A. 6𝑥 + 8𝑦 − 11 = 0. B. 3𝑥 + 4𝑦 − 2 = 0. C. 6𝑥 + 8𝑦 + 11 = 0. D. 3𝑥 + 4𝑦 + 2 = 0. Câu 37: Có bao nhiêu giá trị nguyên của tham số 𝑚 để hàm số 𝑦 = 𝑥 + (𝑚 − 3)𝑥 − (𝑚 − 9)𝑥 + 1 đạt cực tiểu tại 𝑥 = 0 ? A. 4. B. 7. D. 6. C. Vô số. 1 7 𝑥 − 𝑥 có đồ thị (𝐶) . Có bao nhiêu điểm 𝐴 thuộc (𝐶) sao cho tiếp 6 3 tuyến của (𝐶) tại 𝐴 cắt (𝐶) tại hai điểm phân biệt 𝑀(𝑥 ; 𝑦 ), 𝑁(𝑥 ; 𝑦 ) (𝑀, 𝑁 khác 𝐴) thỏa mãn 𝑦 − 𝑦 = 4(𝑥 − 𝑥 ) ? A. 2. B. 3 . C. 0. D. 1. Câu 38: Cho hàm số 𝑦 = Câu 39: Ba bạn A, B, C mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1;16]. Xác suất để ba số được viết ra có tổng chia hết cho 3 bằng 683 19 77 1457 A. . B. . C. . D. . 2048 56 512 4096 Câu 40: Cho 𝑎 > 0, 𝑏 > 0 thỏa mãn log trị của 𝑎 + 2𝑏 bằng 3 B. 4. A. . 2 + + (4𝑎 + 𝑏 + 1) + log C. 5. + (2𝑎 + 2𝑏 + 1) = 2. Giá D. 15 . 4 Câu 41: Trong không gian 𝑂𝑥𝑦𝑧, cho mặt cầu (𝑆) có tâm 𝐼(−1; 0; 2) và đi qua điểm 𝐴(0; 1; 1). Xét các điểm 𝐵, 𝐶, 𝐷 thuộc (𝑆) sao cho 𝐴𝐵, 𝐴𝐶, 𝐴𝐷 đôi một vuông góc với nhau. Thể tích của khối tứ diện 𝐴𝐵𝐶𝐷 có giá trị lớn nhất bằng 4 8 A. 4. B. 8. C. . D. . 3 3 Câu 42: Cho khối lăng trụ 𝐴𝐵𝐶 . 𝐴'𝐵'𝐶', khoảng cách từ 𝐶 đến đường thẳng 𝐵𝐵' bằng √5, khoảng cách từ 𝐴 đến các đường thẳng 𝐵𝐵' và 𝐶𝐶' lần lượt bằng 1 và 2, hình chiếu vuông góc của 𝐴 lên mặt phẳng (𝐴'𝐵'𝐶') là trung điểm 𝑀 của 𝐵'𝐶' và 𝐴'𝑀 = √5 . Thể tích của khối lăng trụ đã cho bằng √15 2√5 2√15 B . √5 . A. . C. . D. . 3 3 3 3 Câu 43: Cho hai hàm số 𝑓(𝑥) = 𝑎𝑥 + 𝑏𝑥 + 𝑐𝑥 + và 4 3 𝑔(𝑥) = 𝑑𝑥 + 𝑒𝑥 − (𝑎, 𝑏, 𝑐, 𝑑, 𝑒 ∈ ℝ) . Biết rằng đồ thị của hàm 4 số 𝑦 = 𝑓(𝑥) và 𝑦 = 𝑔(𝑥) cắt nhau tại ba điểm có hoành độ lần lượt là −2; 1; 3 (tham khảo hình vẽ). Hình phẳng giới hạn bởi hai đồ thị đã cho có diện tích bằng 125 253 253 125 A. . B. . C. . D. . 48 24 48 24 Trang 4/5 - Mã đề thi 122 Câu 44: Cho hai hàm số 𝑦 = 𝑓(𝑥), 𝑦 = 𝑔(𝑥) . Hai hàm số 𝑦 = 𝑓 (𝑥) và 𝑦 = 𝑔 (𝑥) có đồ thị như hình vẽ bên, trong đó đường cong đậm hơn là 5 đồ thị của hàm số 𝑦 = 𝑔 (𝑥). Hàm số ℎ(𝑥) = 𝑓(𝑥 + 6) − 𝑔 2𝑥 + 2 đồng biến trên khoảng nào dưới đây ? 1 17 A. ;1 . B. 4; . 4 4 C. 21 ; +∞ . 5 D. 3; 21 . 5 𝑥−2 có đồ thị (𝐶). Gọi 𝐼 là giao điểm của hai tiệm cận của (𝐶). Xét tam 𝑥+1 giác đều 𝐴𝐵𝐼 có hai đỉnh 𝐴, 𝐵 thuộc (𝐶), đoạn thẳng 𝐴𝐵 có độ dài bằng A. √6 . B. √3 . C. 2√2 . D. 2√3 . Câu 45: Cho hàm số 𝑦 = Câu 46: Cho phương trình 2 + 𝑚 = log (𝑥 − 𝑚) với 𝑚 là tham số. Có bao nhiêu giá trị nguyên của 𝑚 ∈ (−18; 18) để phương trình đã cho có nghiệm ? A. 17. B. 9. C. 18. D. 19. Câu 47: Cho hình lập phương 𝐴𝐵𝐶𝐷 . 𝐴'𝐵'𝐶'𝐷' có tâm 𝑂. Gọi 𝐼 là tâm của hình vuông 𝐴'𝐵'𝐶'𝐷' và 𝑀 là điểm thuộc đoạn thẳng 𝑂𝐼 sao cho 1 𝑀𝑂 = 𝑀𝐼 (tham khảo hình vẽ). Khi đó sin của góc tạo bởi hai mặt 2 phẳng (𝑀𝐶'𝐷') và (𝑀𝐴𝐵) bằng 17√13 6√13 7√85 6√85 B. . C. D. . A. . . 65 65 85 85 Câu 48: Có bao nhiêu số phức 𝑧 thỏa mãn |𝑧|(𝑧 − 5 − 𝑖) + 2𝑖 = (6 − 𝑖)𝑧 ? A. 1. B. 2. C. 4. D. 3. 𝑥 = 1 + 3𝑡 Câu 49: Trong không gian 𝑂𝑥𝑦𝑧, cho đường thẳng 𝑑: 𝑦 = 1 + 4𝑡 . Gọi 𝛥 là đường thẳng đi qua điểm 𝑧=1 𝐴(1; 1; 1) và có vectơ chỉ phương → 𝑢 = (−2; 1; 2) . Đường phân giác của góc nhọn tạo bởi 𝑑 và 𝛥 có phương trình là 𝑥 = − 18 + 19𝑡 𝑥= 1−𝑡 𝑥 = 1 + 27𝑡 𝑥 = − 18 + 19𝑡 A. 𝑦 = − 6 + 7𝑡 𝑧 = 11 − 10𝑡 . B. 𝑦 = 1 + 17𝑡 . 𝑧 = 1 + 10𝑡 Câu 50: Cho hàm số 𝑓(𝑥) thỏa mãn 𝑓(2) = − C. 𝑦 = 1 + 𝑡 𝑧= 1+𝑡 . D. 𝑦 = − 6 + 7𝑡 . 𝑧 = − 11 − 10𝑡 1 và 𝑓 (𝑥) = 𝑥 [𝑓(𝑥)] với mọi 𝑥 ∈ ℝ . 5 Giá trị của 𝑓(1) bằng 4 A. − . 5 B. − 79 71 . C. − . 20 20 --------------------HẾT------------------ D. − 4 . 35 Trang 5/5 - Mã đề thi 122