Cộng đồng chia sẻ tri thức Lib24.vn

Bài 1: Đại cương về đường thẳng và mặt phẳng

Lý thuyết
Mục lục
* * * * *

Bài 1 (SGK trang 53)

Cho điểm A không nằm trên mặt phẳng \(\left(\alpha\right)\) chứa tam giác BCD. Lấy E, F là các điểm lần lượt nằm trên các cạnh AB, AC

a) Chứng minh đường thẳng EF nằm trong mặt phẳng (ABC)

b) Khi EF và BC cắt nhau tại I, chứng minh I là điểm chung của hai mặt phẳng (BCD) và (DEF)

Hướng dẫn giải

a) E, F ∈ (ABC) => EF ⊂ (ABC)

b) I ∈ EF => I ∈ ( DEF)

Bài 2 (SGK trang 53)

Gọi M là giao điểm của đường thẳng d và mặt phẳng \(\left(\alpha\right)\). Chứng minh M là điểm chung của \(\left(\alpha\right)\) với một mặt phẳng bất kì chứa d ?

Hướng dẫn giải


Hiển nhiên M ∈ (α ) , Gọi (β) là mặt phẳng bất kì chứa d, ta có

=> M ∈ (β)

Vậy M là điểm chung của (α ) và mọi mặt phẳng (β) chứa d

Bài 3 (SGK trang 53)

Cho 3 đường thẳng \(d_1;d_2;d_3\) không cùng nằm trong một mặt phẳng và cắt nhau từng đôi một. Chứng minh ba đường thẳng trên đồng quy ?

Hướng dẫn giải

Gọi {d_{1}}^{}, {d_{2}}^{}, {d_{3}}^{} là ba đường thẳng đã cho. Gọi I = {d_{1}}^{}{d_{2}}^{}

Ta chứng minh I ∈ {d_{3}}^{}

I ∈ {d_{1}}^{} => I ∈ (β) = ( {d_{1}}^{}, {d_{3}}^{})

I ∈ {d_{2}}^{} => I ∈ (ɣ) = ( {d_{2}}^{}, {d_{3}}^{} )

Từ đó suy ra, I ∈ {d_{3}}^{}

Bài 4 (SGK trang 53)

Cho 4 điểm A, B, C và D không đồng phẳng. Gọi \(G_{A;}G_B;G_C;G_D\) lần lượt là trọng tâm của các tam giác BCD, CDA, ABD, ABC. Chứng minh \(AG_A;BG_B;CG_C;DG_D\) đồng quy ?

Hướng dẫn giải

TenAnh1 A = (-4.38, -5.76) A = (-4.38, -5.76) A = (-4.38, -5.76) B = (10.98, -5.76) B = (10.98, -5.76) B = (10.98, -5.76) = 3

Bài 5 (SGK trang 53)

Cho tứ giác ABCD nằm trong mặt phẳng \(\left(\alpha\right)\) có hai cạnh AB và CD không song song. Gọi S là điểm nằm ngoài mặt phẳng \(\left(\alpha\right)\) và M là trung điểm đoạn SC

a) Tìm giao điềm N của đường thẳng SD và mặt phẳng (MAB) ?

b) Gọi O là giao điểm của AC và BD. Chứng minh rằng ba đường thẳng SO, AM, BN đồng quy ?

Hướng dẫn giải

Hỏi đáp Toán

a) Trong mặt phẳng (α) vì AB và CD không song song nên AB ∩ DC = E

=> E ∈ DC, mà DC ⊂ (SDC)

=> E ∈ ( SDC). Trong (SDC) đường thẳng ME cắt SD tại N

=> N ∈ ME mà ME ⊂ (MAB)

=> N ∈ ( MAB). Lại có N ∈ SD => N = SD ∩ (MAB)

b) O là giao điểm của AC và BD => O thộc AC và BD, mà AC ⊂ ( SAC)

=> O ∈( SAC), BD ⊂ (SBD) , O ∈ (SBD)

=> O là một điểm chung của (SAC) và (SBD), mặt khác S cũng là điểm chung của (SAC) và (SBD) => (SAC) ∩ (SBD) = SO

Trong mặt phẳng (AEN) gọi I = AM ∩ BN thì I thuộc AM và I thuộc BN

Mà AM ⊂ (SAC) => I ∈ (SAC), BN ⊂ ( SBD) => I ∈ (SBD). Như vậy I là điểm chung của (SAC) và (SBD) nên I thuộc giao tuyến SO của (SAC) và (SBD) tức là S, I, O thẳng hàng hay SO, AM, BN đồng quy.

Bài 6 (SGK trang 54)

Cho 4 điểm A, B, C và D không đồng phẳng. Gọi M, N lần lượt là trung điểm của AC và BC. Trên đoạn BD lấy điểm P sao cho BP = 2PD.

a) Tìm giao điểm của đường thẳng CD và mặt phẳng (MNP)

b) Tìm giao tuyến của hai mặt phẳng (MNP) và (ACD)

Hướng dẫn giải

A B C D N M P K I
a) Gọi \(NP\cap CD=K\).
Do \(K\in NP\) nên \(K\in\left(MNP\right)\). Vậy K là giao điểm của CD và (MNP).
b) Do \(M\in AC\) nên \(M\in\left(MNP\right)\cap\left(ACD\right)\).
Và K là giao điểm của CD và (MNP) nên \(K\in\left(MNP\right)\cap\left(ACD\right)\).
Vì vậy MK là giao tuyến của (MNP) và (ACD).

Bài 7 (SGK trang 54)

Cho 4 điểm A, B, C và D không đồng phẳng. Gọi I, K lần lượt là trung điểm của hai đoạn thẳng AD và BC

a) Tìm giao tuyến của hai mặt phẳng (IBC) và (KAD)

b) Gọi M và N là hai điểm lần lượt lấy trên hai đoạn thẳng AB và AC. Tìm giao tuyến của hai mặt phẳng (IBC) và (DMN)

 

Hướng dẫn giải

a) Chứng minh I, K là hai điểm chung của (BIC) và (AKD)

b) Gọi P = CI ∩ DN và Q = BI ∩ DM, chứng minh PQ là giao tuyến cần tìm.

Bài 8 (SGK trang 54)

Cho tứ diện ABCD. Gọi M và N lần lượt là trung điểm của các cạnh AB và CD, trên cạnh AD lấy điểm P không trùng với trung điểm của AD.

a) Gọi E là giao điểm của đường thẳng MP và đường thẳng BD. Tìm giao tuyến của hai mặt phẳng (PMN) và (BCD)

b) Tìm giao điểm của mặt phẳng (PMN) và BC

Hướng dẫn giải

a) Ta có E, N ∈ (MNP) ⋂ (BCD)

=> (PMN) ⋂ (BCD) = EN.

b) Gọi Q là giao điểm của NE và BC thì Q là giao điểm của (PMN) và BC.

Bài 9 (SGK trang 54)

Cho hình chóp S.ABCD có đáy là hình bình hành ABCD. Trong mặt phẳng đáy vẽ đường thẳng d đi qua A và không song song với các cạnh hình bình hành, d cắt đoạn BC tại E. Gọi C' là một điểm nằm trên cạnh SC.

a) Tìm giao điểm M của CD và mặt phẳng (C'AE)

b) Tìm thiết diện của hình chóp cắt bởi mặt phẳng (C'AE)

Hướng dẫn giải

a) Trong (ABCD) gọi M = AE ∩ DC => M ∈ AE, AE ⊂ ( C'AE) => M ∈ ( C'AE). Mà M ∈ CD => M = DC ∩ (C'AE).

b)
Do M = DC ∩ (C'AE) nên  M ∈ (SDC),.
Trong  (SDC) : MC' ∩ SD = F.
Ta có:
\(\left(C'AE\right)\cap\left(SDC\right)=FC'\)
\(\left(C'AE\right)\cap\left(SAD\right)=AF\)
\(\left(C'AE\right)\cap\left(ABCD\right)=AE\)
\(\left(C'AE\right)\cap\left(SBC\right)=C'E\)

Vậy thiết diện là AEC'F.

Bài 10 (SGK trang 54)

Cho hình chóp S.ABCD có AB và CD không song song. Gọi M là một điểm thuộc miền trong của tam giác SCD

a) Tìm giao điểm N của đường thẳng CD và mặt phẳng (SBM)

b) Tìm giao tuyến của hai mặt phẳng (SBM) và (SAC)

c) Tìm giao điểm I của đường thẳng BM và mặt phẳng (SAC)

d) Tìm giao điểm P của SC và mặt phẳng (ABM), từ đó suy ra giao tuyến của hai mặt phẳng (SCD) và (ABM)

Hướng dẫn giải

a) Trong (SCD) kéo dài SM cắt CD tại N, Chứng minh N thuộc (SBM)

b) (SBM) ≡ (SBN). Giao tuyến cần tìm là SO

c) Trong (SBN) ta có MB giao SO tại I

d) Trong (ABCD) , ta có AB giao CD tại K, Trong (SCD), ta có KQ giao SC tại P

Từ đó suy ra được giao tuyến của hai mặt phẳng (SCD) và (ABM) là KQ.

Có thể bạn quan tâm