§2. Tổng và hiệu của hai vectơ
Bài 1 (SGK trang 12)
Cho đoạn thẳng AB và điểm M nằm giữa A và B sao cho \(AM>MB\). Vẽ các vectơ \(\overrightarrow{MA}+\overrightarrow{MB}\) và \(\overrightarrow{MA}-\overrightarrow{MB}\) ?
Hướng dẫn giải
Bài 2 (SGK trang 12)
Cho hình bình hành ABCD và một điểm M tùy ý. Chứng minh rằng \(\overrightarrow{MA+}\overrightarrow{MC}=\overrightarrow{MB}+\overrightarrow{MD}\) ?
Hướng dẫn giải
Bài 3 (SGK trang 12)
Chứng minh rằng đối với tứ giác ABCD bất kì ta luôn có :
a) \(\overrightarrow{AB}+\overrightarrow{BC}+\overrightarrow{CD}+\overrightarrow{DA}=\overrightarrow{O}\)
b) \(\overrightarrow{AB}-\overrightarrow{AD}=\overrightarrow{CB}-\overrightarrow{CD}\)
Hướng dẫn giải
Bài 4 (SGK trang 12)
Cho tam giác ABC. Bên ngoài của tam giác vẽ các hình bình hành ABIJ, BCPQ, CARS. Chứng minh rằng \(\overrightarrow{RJ}+\overrightarrow{IQ}+\overrightarrow{PS}=\overrightarrow{O}\) ?
Hướng dẫn giải
Ta xét tổng:
+
+
+
+
+
=
=
(1)
Mặt khác, ta có ABIJ, BCPQ và CARS là các hình bình hành nên:
=
=
=
=> +
+
=
+
+
=
=
(2)
Từ (1) và (2) suy ra : +
+
=
(dpcm)
Bài 5 (SGK trang 12)
Cho tam giác đều ABC cạnh bằng a. Tính độ dài của các vectơ \(\overrightarrow{AB}+\overrightarrow{BC}\) và \(\overrightarrow{AB}-\overrightarrow{BC}\) ?
Hướng dẫn giải
Bài 6 (SGK trang 12)
Cho hình bình hành ABCD có tâm O. Chứng minh rằng :
a) \(\overrightarrow{CO}-\overrightarrow{OB}=\overrightarrow{BA}\)
b) \(\overrightarrow{AB}-\overrightarrow{BC}=\overrightarrow{DB}\)
c) \(\overrightarrow{DA}-\overrightarrow{DB}=\overrightarrow{OD}-\overrightarrow{OC}\)
d) \(\overrightarrow{DA}-\overrightarrow{DB}+\overrightarrow{DC}=\overrightarrow{0}\)
Hướng dẫn giải
a) Ta có, theo quy tắc ba điểm của phép trừ:
=
-
(1)
Mặt khác, =
(2)
Từ (1) và (2) suy ra:
=
-
.
b) Ta có : =
-
(1)
=
(2)
Từ (1) và (2) cho ta:
=
-
.
c) Ta có :
-
=
(1)
-
=
(2)
=
(3)
Từ (1), (2), (3) suy ra đpcm.
d) -
+
= (
-
) +
=
+
=
+
( vì
=
) =
Bài 7 (SGK trang 12)
Cho \(\overrightarrow{a},\overrightarrow{b}\) là hai vectơ khác \(\overrightarrow{0}\). Khi nào có đẳng thức :
a) \(\left|\overrightarrow{a}+\overrightarrow{b}\right|=\left|\overrightarrow{a}\right|+\left|\overrightarrow{b}\right|\)
b) \(\left|\overrightarrow{a}+\overrightarrow{b}\right|=\left|\overrightarrow{a}-\overrightarrow{b}\right|\)
Hướng dẫn giải
Bài 8 (SGK trang 12)
Cho \(\left|\overrightarrow{a}+\overrightarrow{b}\right|=0\). So sánh độ dài, phương và hướng của hai vectơ \(\overrightarrow{a}\) và \(\overrightarrow{b}\) ?
Hướng dẫn giải
Từ = 0, ta có
+
= 0 =>
= -
Điều này chứng tỏ hai vectơ có cùng độ dài =
, cùng phương và ngược hướng
Bài 9 (SGK trang 12)
Chứng minh rằng \(\overrightarrow{AB}=\overrightarrow{CD}\) khi và chỉ khi trung điểm của hai đoạn thẳng AD và BC trùng nhau ?
Hướng dẫn giải
Nếu \(\overrightarrow{AB}=\overrightarrow{CD}\) thì AD và BC có trung điểm trùng nhau. Gọi I là trung điểm của AD ta chứng minh I cũng là trung điểm của BC.
Theo quy tắc của ba điểm của tổng, ta có
\(\overrightarrow{AB}=\overrightarrow{AI}+\overrightarrow{IB};\overrightarrow{CD}=\overrightarrow{CI}+\overrightarrow{ID}\)
Vì \(\overrightarrow{AB}=\overrightarrow{CD}\) nên \(\overrightarrow{AI}+\overrightarrow{IB}=\overrightarrow{CI}+\overrightarrow{ID}\)
\(\Rightarrow\overrightarrow{AI}-\overrightarrow{ID}=\overrightarrow{CI}-\overrightarrow{IB}\)
\(\Rightarrow\overrightarrow{AI}+\overrightarrow{DI}=\overrightarrow{CI}+\overrightarrow{BI}\left(1\right)\)
Vì I là trung điểm của AD nên \(\overrightarrow{AI}+\overrightarrow{DI}=\overrightarrow{0}\left(2\right)\)
Từ (1) và (2) suy ra \(\overrightarrow{CI}+\overrightarrow{BI}=\overrightarrow{0}\left(3\right)\)
Từ (3) ta có chung điểm I, ta chứng minh \(\overrightarrow{AB}=\overrightarrow{CD}\)
I là trung điểm AD \(\Rightarrow\overrightarrow{AI}+\overrightarrow{DI}=\overrightarrow{0}\Rightarrow\overrightarrow{AI}-\overrightarrow{ID}=\overrightarrow{0}\)
I là trung điểm BC \(\Rightarrow\overrightarrow{CI}+\overrightarrow{BI}=0\Rightarrow\overrightarrow{CI}-\overrightarrow{IB}=\overrightarrow{0}\)
Suy ra \(\overrightarrow{AI}-\overrightarrow{ID}=\overrightarrow{CI}-\overrightarrow{IB}\)
\(\Rightarrow\overrightarrow{AI}+\overrightarrow{IB}=\overrightarrow{CI}+\overrightarrow{ID}\Rightarrow\overrightarrow{AB}=\overrightarrow{CD}\)
Bài 10 (SGK trang 12)
Cho ba lực \(\overrightarrow{F_1}=\overrightarrow{MA};\overrightarrow{F_2}=\overrightarrow{MB};\overrightarrow{F_3}=\overrightarrow{MC}\) cùng tác động vào một vật tại điểm M và vật đứng yên. Cho biết cường độ của \(\overrightarrow{F_1},\overrightarrow{F_2}\) đều là 100N và \(\widehat{AMB}=60^0\). Tìm cường độ và hướng của lực \(\overrightarrow{F_3}\) ?
Hướng dẫn giải
\(\left|\overrightarrow{F_3}\right|=100\sqrt{3}\) và \(\overrightarrow{F_3}\) ngược hướng với hướng \(\overrightarrow{ME}\) với E là đỉnh thứ tư của hình bình hành MACB
Bài 1.9 (STB trang 23)
Cho bốn điểm A, B, C và D. Chứng minh \(\overrightarrow{AB}-\overrightarrow{CD}=\overrightarrow{AC}-\overrightarrow{BD}\) ?
Hướng dẫn giải
Giả sử \(\overrightarrow{AB}-\overrightarrow{CD}=\overrightarrow{AC}-\overrightarrow{BD}\)
\(\Leftrightarrow\overrightarrow{AB}+\overrightarrow{DC}-\overrightarrow{AC}+\overrightarrow{BD}=\overrightarrow{0}\)
\(\Leftrightarrow\left(\overrightarrow{AB}+\overrightarrow{BD}\right)+\left(\overrightarrow{DC}-\overrightarrow{AC}\right)=\overrightarrow{0}\)
\(\Leftrightarrow\overrightarrow{AD}+\overrightarrow{DA}=\overrightarrow{0}\).
Vậy điều giả sử đúng. Ta có điều phải chứng minh.
Bài 1.10 (STB trang 23)
Cho hai vectơ \(\overrightarrow{a}\) và \(\overrightarrow{b}\) sao cho \(\overrightarrow{a}+\overrightarrow{b}=\overrightarrow{0}\)
a) Dựng \(\overrightarrow{OA}=\overrightarrow{a};\overrightarrow{OB}=\overrightarrow{b}\). Chứng minh O là trung điểm của AB
b) Dựng \(\overrightarrow{OA}=\overrightarrow{a};\overrightarrow{AB}=\overrightarrow{b}\). Chứng minh \(O\equiv B\)
Hướng dẫn giải
Do \(\overrightarrow{a}+\overrightarrow{b}=\overrightarrow{0}\) nên hai véc tơ \(\overrightarrow{a}\) và \(\overrightarrow{b}\) đối nhau.
a)
\(\overrightarrow{OA}+\overrightarrow{OB}=\overrightarrow{a}+\overrightarrow{b}=\overrightarrow{0}\) nên O là trung điểm của AB.
b) \(\overrightarrow{OB}=\overrightarrow{OA}+\overrightarrow{AB}=\overrightarrow{a}+\overrightarrow{b}=\overrightarrow{0}\) nên \(O\equiv B\).
Bài 1.11 (STB trang 23)
Gọi O là tâm của tam giác đều ABC. Chứng minh rằng : \(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}=\overrightarrow{0}\) ?
Hướng dẫn giải
trong tam giác đều ABC , tâm O của đường tròn ngoại tiếp cũng là trọng tâm của tam giác .
vậy \(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}=\overrightarrow{0}\) (ĐPCM)
Bài 1.12 (STB trang 23)
Gọi O là giao điểm hai đường chéo của hình bình hành ABCD. Chứng minh rằng \(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}+\overrightarrow{OD}=\overrightarrow{O}\) ?
Hướng dẫn giải
\(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}+\overrightarrow{OD}=\left(\overrightarrow{OA}+\overrightarrow{OC}\right)+\left(\overrightarrow{OB}+\overrightarrow{OC}\right)\)
\(=\overrightarrow{0}+\overrightarrow{0}\)(Theo tính chất hình bình hành).
\(=\overrightarrow{0}\) .
Bài 1.13 (STB trang 23)
Cho tam giác ABC có trung tuyến AM. Trên cạnh AC lấy hai điểm E và F sao cho AE = EF = FC; BE cắt AM tại N. Chứng minh \(\overrightarrow{NA}\) và \(\overrightarrow{NM}\) là hai vectơ đối nhau.
Hướng dẫn giải
Kẻ đoạn thẳng MF.
Do AE = EF nên E là trung điểm AF.
Trong tam giác ABC có AM là đường trung tuyến nên M là trung điểm của BC.
Vì vậy: MF là đường trung bình của tam giác BEC.
Suy ra: MF//BE.
Trong tam giác AMF có E là trung điểm của AF, BE//MF nên BE đi qua trung điểm của AM hay N là trung điểm của AM.
Vì vậy \(\overrightarrow{NA}\) và \(\overrightarrow{NM}\) là hai véc tơ đối nhau.
Bài 1.14 (STB trang 23)
Cho hai điểm phân biệt A và B. Tìm điểm M thỏa mãn một trong các điều kiện sau :
a) \(\overrightarrow{MA}-\overrightarrow{MB}=\overrightarrow{BA}\)
b) \(\overrightarrow{MA}-\overrightarrow{MB}=\overrightarrow{AB}\)
c) \(\overrightarrow{MA}+\overrightarrow{MB}=\overrightarrow{0}\)
Hướng dẫn giải
a) \(\overrightarrow{MA}-\overrightarrow{MB}=\overrightarrow{MA}+\overrightarrow{BM}=\overrightarrow{BA}\)
Vậy bất kì điểm M nào nằm trên mặt phẳng cũng thỏa mãn:
\(\overrightarrow{MA}-\overrightarrow{MB}=\overrightarrow{BA}\).
b) Do \(\overrightarrow{MA}-\overrightarrow{MB}=\overrightarrow{MA}+\overrightarrow{BM}=\overrightarrow{BA}\) nên không tồn tại điểm M thỏa mãn: \(\overrightarrow{MA}-\overrightarrow{MB}=\overrightarrow{AB}\).
c) \(\overrightarrow{MA}+\overrightarrow{MB}=\overrightarrow{0}\) nên M là trung điểm của AB.
Bài 1.15 (STB trang 23)
Cho tam giác ABC. Chứng minh rằng nếu \(\left|\overrightarrow{CA}+\overrightarrow{CB}\right|=\left|\overrightarrow{CA}-\overrightarrow{CB}\right|\) thì tam giác ABC là tam giác vuông tại C ?
Hướng dẫn giải
Dựng hình hình hành CADB.
Theo quy tắc hình bình hành: \(\overrightarrow{CA}+\overrightarrow{CB}=\overrightarrow{CD}\).
Vì vậy \(\left|\overrightarrow{CA}+\overrightarrow{CB}\right|=\left|\overrightarrow{CD}\right|=CD\);
Mặt khác \(\left|\overrightarrow{CA}-\overrightarrow{CB}\right|=\left|\overrightarrow{CA}+\overrightarrow{BC}\right|=\left|\overrightarrow{BA}\right|=BA\).
Suy ra: \(CD=AB\).
Hình bình hành CADB có hai đường chéo bằng nhau (\(CD=AB\) )nên hình bình hành CADB là hình chữ nhật.
Bài 1.16 (STB trang 23)
Cho ngũ giác ABCDE. Chứng minh \(\overrightarrow{AB}+\overrightarrow{BC}+\overrightarrow{CD}=\overrightarrow{AE}-\overrightarrow{DE}\) ?
Hướng dẫn giải
VT = \(\overrightarrow{AB}+\overrightarrow{BC}+\overrightarrow{CD}=\overrightarrow{AC}+\overrightarrow{CD}=\overrightarrow{AD}\).
VP = \(\overrightarrow{AE}-\overrightarrow{DE}=\overrightarrow{AE}+\overrightarrow{ED}=\overrightarrow{AD}\).
VT = VP (đpcm).
Bài 1.17 (STB trang 23)
Cho 3 điểm O, A, B không thẳng hàng. Với điều kiện nào thì vectơ \(\overrightarrow{OA}+\overrightarrow{OB}\) nằm trên đường phân giác của góc \(\widehat{AOB}\) ?
Hướng dẫn giải
a) Giả sử véc tơ \(\overrightarrow{OA}+\overrightarrow{OB}\) nằm trên đường phân giác góc \(\widehat{AOB}\) .
Dựng hình bình hành OABD.
Theo quy tắc hình bình hành: \(\overrightarrow{OA}+\overrightarrow{OB}=\overrightarrow{OD}\).
Theo giả thiết thì OD là tia phân giác góc \(\widehat{AOB}\).
Vì vậy hình bình hành OABD là hình thoi.
Suy ra OA = OB.
- Giả sử OA = OB.
Khi đó hình bình hành OABD có OA = OB nên tứ giác OABD là hình thoi.
Kết luận: Điều kiện cần và đủ để véc tơ \(\overrightarrow{OA}+\overrightarrow{OB}\) nằm trên đường phân giác góc \(\widehat{AOB}\) là OA = OB.
Bài 1.18 (STB trang 23)
Cho hai lực \(\overrightarrow{F_1}\) và \(\overrightarrow{F_2}\) có điểm đặt O vào tạo với nhau góc \(60^0\). Tìm cường độ tổng lực của hai lực ấy biết rằng cường độ của hai lực \(\overrightarrow{F_1}\) và \(\overrightarrow{F_2}\) đều là 100N
Hướng dẫn giải
Đặt \(\overrightarrow{F_1}=\overrightarrow{OA};\overrightarrow{F_2}=\overrightarrow{OB}\) ; \(\left|\overrightarrow{OA}\right|=100;\left|\overrightarrow{OB}\right|=100\).
Dựng hình bình hành OBDA.
Theo quy tắc hình bình hành \(\overrightarrow{OA}+\overrightarrow{OB}=\overrightarrow{OD}\).
Do OA = OB = 100 nên tứ giác OBDA là hình thoi.
Vì vậy \(OD\perp AB\) và \(OD=2OK\).
Áp dụng định lý Pi-ta-go \(OK=\sqrt{OA^2-AK^2}=\sqrt{100^2-50^2}=50\sqrt{3}\).
\(OD=2OK=2.50\sqrt{3}=100\sqrt{3}\).
Vì vậy \(\left|\overrightarrow{OD}\right|=100\sqrt{3}\).
Từ đó duy ra: \(\left|\overrightarrow{F_1}+\overrightarrow{F_2}\right|=100\sqrt{3}\).
Vì vậy cường độ tổng lực của \(\overrightarrow{F_1}\) và \(\overrightarrow{F_2}\) là \(100\sqrt{3}N\).
Bài 1.19 (STB trang 23)
Cho hình bình hành ABCD. Gọi O là một điểm bất kì trên đường chéo AC. Qua O kẻ các đường thẳng song song với các cạnh của hình bình hành. Các đường thẳng này cắt AB và DC lần lượt tại M và N, cắt AD và BC lần lượt tại E và F. Chứng minh rằng :
a) \(\overrightarrow{OA}+\overrightarrow{OC}=\overrightarrow{OB}+\overrightarrow{OD}\)
b) \(\overrightarrow{BD}=\overrightarrow{ME}+\overrightarrow{FN}\)
Hướng dẫn giải
a) Giả sử \(\overrightarrow{OA}+\overrightarrow{OC}=\overrightarrow{OB}+\overrightarrow{OD}\)
\(\Leftrightarrow\overrightarrow{OA}+\overrightarrow{OC}-\overrightarrow{OB}-\overrightarrow{OD}=\overrightarrow{0}\)
\(\Leftrightarrow\overrightarrow{OA}+\overrightarrow{BO}+\overrightarrow{OC}+\overrightarrow{DO}=\overrightarrow{0}\)
\(\Leftrightarrow\left(\overrightarrow{BO}+\overrightarrow{OA}\right)+\left(\overrightarrow{DO}+\overrightarrow{OC}\right)=\overrightarrow{0}\)
\(\Leftrightarrow\overrightarrow{BA}+\overrightarrow{DC}=\overrightarrow{0}\) (đúng do tứ giác ABCD là hình bình hành).
b) \(\overrightarrow{ME}+\overrightarrow{FN}=\overrightarrow{MA}+\overrightarrow{AE}+\overrightarrow{FC}+\overrightarrow{CN}\)
\(=\left(\overrightarrow{MA}+\overrightarrow{CN}\right)+\left(\overrightarrow{AE}+\overrightarrow{FC}\right)\).
Do các tứ giác AMOE, MOFB, OFCN, EOND cũng là các hình bình hành.
Vì vậy \(\overrightarrow{CN}=\overrightarrow{FO}=\overrightarrow{BM};\overrightarrow{FC}=\overrightarrow{ON}=\overrightarrow{ED}\).
Do đó: \(\overrightarrow{ME}+\overrightarrow{FN}=\left(\overrightarrow{MA}+\overrightarrow{CN}\right)+\left(\overrightarrow{AE}+\overrightarrow{FC}\right)\)
\(=\left(\overrightarrow{MA}+\overrightarrow{BM}\right)+\left(\overrightarrow{AE}+\overrightarrow{ED}\right)\)
\(=\overrightarrow{BA}+\overrightarrow{AD}=\overrightarrow{BD}\) (Đpcm).