Cộng đồng chia sẻ tri thức Lib24.vn

Bài tập ôn tập cuối năm

Bài 2 (trang 125 SGK Hình học 11): Cho tam giác ABC nội tiếp đường tròn tâm O. Gọi G và H tương ứng là trọng tâm và trực tâm của tam giác, các điểm A', B',C' lần lượt là trung điểm của các cạnh BC, CA, AB.

(a) Tìm phép vị tự F biến A, B, C tương tứng thành A', B',C'

(b) Chứng minh rằng O, G, H thẳng hàng.

(c) Tìm ảnh của O qua phép vị tự F

(d)Gọi A'', B'',C'' lần lượt là trung điểm của các đoạn thẳng AH, BH, CH; A1, B1,C1 theo thứ tự là giao điểm thứ hai của các tia AH, BH, CH với đường tròn (O); A'1, B'1,C'1 tương ứng là chân các đường cao đi qua A, B, C. Tìm ảnh của A, B, C,A1, B1,C1 qua phép vị tự tâm H tỉ số 1/2.

(e) Chứng minh chín điểm A', B',C',A'', B'',C'',A'1, B'1,C'1 cùng thuộc một đường tròn (đường tròn này gọi là đường tròn Ơ-le của tam giác ABC)

Lời giải:

(a) F là phép vị tự tâm G, tỉ số 1/2.

(b) Để ý rằng O là trực tâm của tam giác A'B'C'

(c) F(O) = O1 là trung điểm của OH.

(d) Ảnh của A, B, C , A1, B1,C1 qua phép vị tự tâm H tỉ số 1/2 tương ứng là A'', B'',C'',A'1, B'1,C'1.

(e) Chứng minh A'', B'',C'',A'1, B'1,C'1 cùng thuộc đường tròn (O1). Sau đó chứng minh A'B'C'cũng thuộc đường tròn (O1) . Chẳng hạn , chứng minh O1A'1 = O1A'

Lượt xem: 149

Liên kết