20 chuyên đề bồi dưỡng học sinh giỏi Toán lớp 8
Nội dung tài liệu
Tải xuống
Link tài liệu:
Có thể bạn quan tâm
Thông tin tài liệu
CHUYÊN ĐỀ 1 - PHẤN TÍCH ĐA THỨC THÀNH NHÂN TỬ
A. MỤC TIÊU:
* Hệ thống lại các dạng toán và các phương pháp phân tích đa thức thành
nhân tử
* Giải một số bài tập về phân tích đa thức thành nhân tử
* Nâng cao trình độ và kỹ năng về phân tích đa thức thành nhân tử
B. CÁC PHƯƠNG PHÁP VÀ BÀI TẬP
I. TÁCH MỘT HẠNG TỬ THÀNH NHIỀU HẠNG TỬ:
Định lí bổ sung:
+ Đa thức f(x) có nghiệm hữu tỉ thì có dạng p/q trong đó p là ước của hệ số
tự do, q là ước dương của hệ số cao nhất
+ Nếu f(x) có tổng các hệ số bằng 0 thì f(x) có một nhân tử là x – 1
+ Nếu f(x) có tổng các hệ số của các hạng tử bậc chẵn bằng tổng các hệ số
của các hạng tử bậc lẻ thì f(x) có một nhân tử là x + 1
f(-1)
f(1)
+ Nếu a là nghiệm nguyên của f(x) và f(1); f(- 1) khác 0 thì a - 1 và a + 1
đều là số nguyên. Để nhanh chóng loại trừ nghiệm là ước của hệ số tự do
1. Ví dụ 1: 3x2 – 8x + 4
Cách 1: Tách hạng tử thứ 2
3x2 – 8x + 4 = 3x2 – 6x – 2x + 4 = 3x(x – 2) – 2(x – 2) = (x – 2)(3x – 2)
Cách 2: Tách hạng tử thứ nhất:
3x2 – 8x + 4 = (4x2 – 8x + 4) - x2 = (2x – 2)2 – x2 = (2x – 2 + x)(2x – 2 – x)
= (x – 2)(3x – 2)
Ví dụ 2: x3 – x2 - 4
1
Ta nhân thấy nghiệm của f(x) nếu có thì x = 1; 2; 4 , chỉ có f(2) = 0 nên x =
2 là nghiệm của f(x) nên f(x) có một nhân tử là x – 2. Do đó ta tách f(x)
thành các nhóm có xuất hiện một nhân tử là x – 2
Cách 1:
x – x – 4 =
3
2
x
3
2 x 2 x 2 2 x 2 x 4 x 2 x 2 x ( x 2) 2( x 2)
=
x 2 x2 x 2
Cách 2:
x 3 x 2 4 x 3 8 x 2 4 x 3 8 x 2 4 ( x 2)( x 2 2 x 4) ( x 2)( x 2)
x 2 x2 2x 4 (x 2) (x 2)(x2 x 2)
=
Ví dụ 3: f(x) = 3x3 – 7x2 + 17x – 5
Nhận xét: 1, 5 không là nghiệm của f(x), như vậy f(x) không có nghiệm
nguyên. Nên f(x) nếu có nghiệm thì là nghiệm hữu tỉ
1
Ta nhận thấy x = 3 là nghiệm của f(x) do đó f(x) có một nhân tử là 3x – 1.
Nên
f(x) = 3x3 – 7x2 + 17x – 5 =
3 x 3 x 2 6 x 2 2 x 15 x 5 3 x 3 x 2 6 x 2 2 x 15 x 5
2
2
= x (3x 1) 2 x(3x 1) 5(3x 1) (3x 1)( x 2 x 5)
2
2
2
Vì x 2 x 5 ( x 2 x 1) 4 ( x 1) 4 0 với mọi x nên không phân tích
được thành
nhân tử nữa
Ví dụ 4: x3 + 5x2 + 8x + 4
Nhận xét: Tổng các hệ số của các hạng tử bậc chẵn bằng tổng các hệ số của
các hạng tử bậc lẻ nên đa thức có một nhân tử là x + 1
2
x3 + 5x2 + 8x + 4 = (x3 + x2 ) + (4x2 + 4x) + (4x + 4) = x2(x + 1) + 4x(x + 1)
+ 4(x + 1)
= (x + 1)(x2 + 4x + 4) = (x + 1)(x + 2)2
Ví dụ 5: f(x) = x5 – 2x4 + 3x3 – 4x2 + 2
Tổng các hệ số bằng 0 thì nên đa thức có một nhân tử là x – 1, chia f(x) cho
(x – 1) ta có:
x5 – 2x4 + 3x3 – 4x2 + 2 = (x – 1)(x4 - x3 + 2 x2 - 2 x - 2)
Vì x4 - x3 + 2 x2 - 2 x - 2 không có nghiệm nguyên cũng không có nghiệm
hữu tỉ nên không phân tích được nữa
Ví dụ 6: x4 + 1997x2 + 1996x + 1997 = (x4 + x2 + 1) + (1996x2 + 1996x +
1996)
= (x2 + x + 1)(x2 - x + 1) + 1996(x2 + x + 1)
= (x2 + x + 1)(x2 - x + 1 + 1996) = (x2 + x + 1)(x2 - x + 1997)
Ví dụ 7: x2 - x - 2001.2002 = x2 - x - 2001.(2001 + 1)
= x2 - x – 20012 - 2001 = (x2 – 20012) – (x + 2001) = (x + 2001)(x – 2002)
II. THÊM , BỚT CÙNG MỘT HẠNG TỬ:
1. Thêm, bớt cùng một số hạng tử để xuất hiện hiệu hai bình phương:
Ví dụ 1: 4x4 + 81 = 4x4 + 36x2 + 81 - 36x2 = (2x2 + 9)2 – 36x2
= (2x2 + 9)2 – (6x)2 = (2x2 + 9 + 6x)(2x2 + 9 – 6x)
= (2x2 + 6x + 9 )(2x2 – 6x + 9)
Ví dụ 2: x8 + 98x4 + 1 = (x8 + 2x4 + 1 ) + 96x4
= (x4 + 1)2 + 16x2(x4 + 1) + 64x4 - 16x2(x4 + 1) + 32x4
= (x4 + 1 + 8x2)2 – 16x2(x4 + 1 – 2x2) = (x4 + 8x2 + 1)2 - 16x2(x2 – 1)2
= (x4 + 8x2 + 1)2 - (4x3 – 4x )2
= (x4 + 4x3 + 8x2 – 4x + 1)(x4 - 4x3 + 8x2 + 4x + 1)
2. Thêm, bớt cùng một số hạng tử để xuất hiện nhân tử chung
Ví dụ 1: x7 + x2 + 1 = (x7 – x) + (x2 + x + 1 ) = x(x6 – 1) + (x2 + x + 1 )
3
= x(x3 - 1)(x3 + 1) + (x2 + x + 1 ) = x(x – 1)(x2 + x + 1 ) (x3 + 1) + (x2 + x +
1)
= (x2 + x + 1)[x(x – 1)(x3 + 1) + 1] = (x2 + x + 1)(x5 – x4 + x2 - x + 1)
Ví dụ 2: x7 + x5 + 1 = (x7 – x ) + (x5 – x2 ) + (x2 + x + 1)
= x(x3 – 1)(x3 + 1) + x2(x3 – 1) + (x2 + x + 1)
= (x2 + x + 1)(x – 1)(x4 + x) + x2 (x – 1)(x2 + x + 1) + (x2 + x + 1)
= (x2 + x + 1)[(x5 – x4 + x2 – x) + (x3 – x2 ) + 1] = (x2 + x + 1)(x5 – x4 + x3 –
x + 1)
Ghi nhớ:
Các đa thức có dạng x3m + 1 + x3n + 2 + 1 như: x7 + x2 + 1 ; x7 + x5 + 1 ; x8 + x4
+1;
x5 + x + 1 ; x8 + x + 1 ; … đều có nhân tử chung là x2 + x + 1
III. ĐẶT BIẾN PHỤ:
Ví dụ 1: x(x + 4)(x + 6)(x + 10) + 128 = [x(x + 10)][(x + 4)(x + 6)] + 128
= (x2 + 10x) + (x2 + 10x + 24) + 128
Đặt x2 + 10x + 12 = y, đa thức có dạng
(y – 12)(y + 12) + 128 = y2 – 144 + 128 = y2 – 16 = (y + 4)(y – 4)
= ( x2 + 10x + 8 )(x2 + 10x + 16 ) = (x + 2)(x + 8)( x2 + 10x + 8 )
Ví dụ 2: A = x4 + 6x3 + 7x2 – 6x + 1
Giả sử x 0 ta viết
1
6
1
+ 2
2
x4 + 6x3 + 7x2 – 6x + 1 = x2 ( x2 + 6x + 7 – x x ) = x2 [(x2 + x ) + 6(x 1
x )+7]
1
1
2
Đặt x - x = y thì x2 + x = y2 + 2, do đó
4
1
A = x2(y2 + 2 + 6y + 7) = x2(y + 3)2 = (xy + 3x)2 = [x(x - x )2 + 3x]2 = (x2
+ 3x – 1)2
Chú ý: Ví dụ trên có thể giải bằng cách áp dụng hằng đẳng thức như sau:
A = x4 + 6x3 + 7x2 – 6x + 1 = x4 + (6x3 – 2x2 ) + (9x2 – 6x + 1 )
= x4 + 2x2(3x – 1) + (3x – 1)2 = (x2 + 3x – 1)2
2
2
2
2
2
Ví dụ 3: A = ( x y z )( x y z ) ( xy yz +zx)
( x2 y 2 z 2 ) 2( xy yz +zx) ( x2 y 2 z 2 ) ( xy yz +zx)2
=
2
2
2
Đặt x y z = a, xy + yz + zx = b ta có
2
2
2
A = a(a + 2b) + b2 = a2 + 2ab + b2 = (a + b)2 = ( x y z + xy + yz +
zx)2
4
4
4
2
2
2 2
2
2
2
2
4
Ví dụ 4: B = 2( x y z ) ( x y z ) 2( x y z )( x y z) ( x y z)
Đặt x4 + y4 + z4 = a, x2 + y2 + z2 = b, x + y + z = c ta có:
B = 2a – b2 – 2bc2 + c4 = 2a – 2b2 + b2 - 2bc2 + c4 = 2(a – b2) + (b –c2)2
2 2
2 2
2 2
Ta lại có: a – b2 = - 2( x y y z z x ) và b –c2 = - 2(xy + yz + zx) Do đó;
2 2
2 2
2 2
B = - 4( x y y z z x ) + 4 (xy + yz + zx)2
=
4x2 y2 4 y2 z2 4z2 x2 4x2 y2 4y2 z2 4z2 x2 8x2 yz 8xy2 z 8xyz2 8xyz(x y z)
3
3
3
3
Ví dụ 5: (a b c) 4(a b c ) 12abc
Đặt a + b = m, a – b = n thì 4ab = m2 – n2
m2 - n 2
4 ). Ta có:
a3 + b3 = (a + b)[(a – b)2 + ab] = m(n2 +
m3 + 3mn 2
4c3 3c(m2 - n 2 )
3
4
C = (m + c) – 4.
= 3( - c3 +mc2 – mn2 + cn2)
5
= 3[c2(m - c) - n2(m - c)] = 3(m - c)(c - n)(c + n) = 3(a + b - c)(c + a - b)(c - a
+ b)
III. PHƯƠNG PHÁP HỆ SỐ BẤT ĐỊNH:
Ví dụ 1: x4 - 6x3 + 12x2 - 14x + 3
Nhận xét: các số 1, 3 không là nghiệm của đa thức, đa thức không có
nghiệm nguyên củng không có nghiệm hữu tỉ
Như vậy nếu đa thức phân tích được thành nhân tử thì phải có dạng
(x2 + ax + b)(x2 + cx + d) = x4 + (a + c)x3 + (ac + b + d)x2 + (ad + bc)x + bd
a c 6
ac b d 12
ad bc 14
đồng nhất đa thức này với đa thức đã cho ta có: bd 3
1, 3
Xét bd = 3 với b, d Z, b
với b = 3 thì d = 1 hệ điều kiện trên trở
thành
a c 6
ac 8
2c 8 c 4
a
3
c
14
ac
8
a 2
bd 3
Vậy: x4 - 6x3 + 12x2 - 14x + 3 = (x2 - 2x + 3)(x2 - 4x + 1)
Ví dụ 2: 2x4 - 3x3 - 7x2 + 6x + 8
Nhận xét: đa thức có 1 nghiệm là x = 2 nên có thừa số là x - 2 do đó ta có:
2x4 - 3x3 - 7x2 + 6x + 8 = (x - 2)(2x3 + ax2 + bx + c)
a 4 3
b 2a 7 a 1
b 5
c 2b 6
c 4
2
c
8
4
3
2
= 2x + (a - 4)x + (b - 2a)x + (c - 2b)x - 2c
Suy ra: 2x4 - 3x3 - 7x2 + 6x + 8 = (x - 2)(2x3 + x2 - 5x - 4)
6
Ta lại có 2x3 + x2 - 5x - 4 là đa thức có tổng hệ số của các hạng tử bậc lẻ và
bậc chẵn bằng nahu nên có 1 nhân tử là x + 1 nên 2x3 + x2 - 5x - 4 = (x +
1)(2x2 - x - 4)
Vậy: 2x4 - 3x3 - 7x2 + 6x + 8 = (x - 2)(x + 1)(2x2 - x - 4)
Ví dụ 3:
12x2 + 5x - 12y2 + 12y - 10xy - 3 = (a x + by + 3)(cx + dy - 1)
= acx2 + (3c - a)x + bdy2 + (3d - b)y + (bc + ad)xy – 3
ac 12
bc ad 10 a 4
c 3
3c a 5
bd 12
b 6
d 2
3
d
b
12
12x2 + 5x - 12y2 + 12y - 10xy - 3 = (4 x - 6y + 3)(3x + 2y - 1)
BÀI TẬP:
Phân tích các đa thức sau thành nhân tử:
CHUYÊN ĐỀ 2 - SƠ LƯỢC VỀ CHỈNH HỢP,
7
CHUYÊN ĐỀ 2: HOÁN VỊ, TỔ HỢP
A. MỤC TIÊU:
* Bước đầu HS hiểu về chỉnh hợp, hoán vị và tổ hợp
* Vận dụng kiến thức vào một ssó bài toán cụ thể và thực tế
* Tạo hứng thú và nâng cao kỹ năng giải toán cho HS
B. KIẾN THỨC:
I. Chỉnh hợp:
1. định nghĩa: Cho một tập hợp X gồm n phần tử. Mỗi cách sắp xếp k phần
tử của tập hợp X ( 1 k n) theo một thứ tự nhất định gọi là một chỉnh
hợp chập k của n phần tử ấy
Số tất cả các chỉnh hợp chập k của n phần tử được kí hiệu A
k
n
2. Tính số chỉnh chập k của n phần tử
II. Hoán vị:
1. Định nghĩa: Cho một tập hợp X gồm n phần tử. Mỗi cách sắp xếp n phần
tử của tập hợp X theo một thứ tự nhất định gọi là một hoán vị của n phần tử
ấy
Số tất cả các hoán vị của n phần tử được kí hiệu Pn
2. Tính số hoán vị của n phần tử
( n! : n giai thừa)
8
III. Tổ hợp:
1. Định nghĩa: Cho một tập hợp X gồm n phần tử. Mỗi tập con của X gồm k
phần tử trong n phần tử của tập hợp X ( 0 k n) gọi là một tổ hợp chập
k của n phần tử ấy
Số tất cả các tổ hợp chập k của n phần tử được kí hiệu C
k
n
2. Tính số tổ hợp chập k của n phần tử
C. Ví dụ:
1. Ví dụ 1:
Cho 5 chữ số: 1, 2, 3, 4, 5
a) có bao nhiêu số tự nhiên có ba chữ số, các chữ số khác nhau, lập bởi ba
trong các chữ số trên
b) Có bao nhiêu số tự nhiên có 5 chữ số, các chữ số khác nhau, lập bởi cả 5
chữ số trên
c)Có bao nhiêu cách chọn ra ba chữ số trong 5 chữ số trên
Giải:
a) số tự nhiên có ba chữ số, các chữ số khác nhau, lập bởi ba trong các chữ
3
số trên là chỉnh hợp chập 3 của 5 phần tử: A = 5.(5 - 1).(5 - 2) = 5 . 4 . 3
5
= 60 số
b) số tự nhiên có 5 chữ số, các chữ số khác nhau, lập bởi cả 5 chữ số trên là
hoán vị cua 5 phần tử (chỉnh hợp chập 5 của 5 phần tử):
5
A = 5.(5 - 1).(5 - 2).(5 - 3).(5 - 4) = 5 . 4 . 3 . 2 . 1 = 120 số
5
9
c) cách chọn ra ba chữ số trong 5 chữ số trên là tổ hợp chập 3 của 5 phần
tử:
C
3
5
5.(5 - 1).(5 - 2)
5.4.3
60
10
3!
3.(3
1)(3
2)
6
=
nhóm
2. Ví dụ 2:
Cho 5 chữ số 1, 2, 3, 4, 5. Dùng 5 chữ số này:
a) Lập được bao nhiêu số tự nhiên có 4 chữ số trong đó không có chữ số
nào lặp lại? Tính tổng các số lập được
b) lập được bao nhiêu số chẵn có 5 chữ số khác nhau?
c) Lập được bao nhiêu số tự nhiên có 5 chữ số, trong đó hai chữ số kề nhau
phải khác nhau
d) Lập được bao nhiêu số tự nhiên có 4 chữ số, các chữ số khác nhau, trong
đó có hai chữ số lẻ, hai chữ số chẵn
Giải
a) số tự nhiên có 4 chữ số, các chữ số khác nhau, lập bởi 4 trong các chữ số
4
trên là chỉnh hợp chập 4 của 5 phần tử:
A = 5.(5 - 1).(5 - 2).(5 - 3) = 5 . 4
5
. 3 . 2 = 120 số
Trong mỗi hang (Nghìn, trăm, chục, đơn vị), mỗi chữ số có mặt: 120 : 5 =
24 lần
Tổng các chữ số ở mỗi hang: (1 + 2 + 3 + 4 + 5). 24 = 15 . 24 = 360
Tổng các số được lập: 360 + 3600 + 36000 + 360000 = 399960
b) chữ số tận cùng có 2 cách chọn (là 2 hoặc 4)
bốn chữ số trước là hoán vị của của 4 chữ số còn lại và có P4 = 4! = 4 . 3 .
2 = 24 cách chọn
Tất cả có 24 . 2 = 48 cách chọn
10