Cộng đồng chia sẻ tri thức Lib24.vn

Lời giải chi tiết đề thi thử THPT quốc gia 2019 đề 8 - môn toán lớp 12

Gửi bởi: Phạm Thọ Thái Dương 13 tháng 1 2020 lúc 9:48:30 | Được cập nhật: 12 giờ trước (5:10:43) Kiểu file: DOC | Lượt xem: 372 | Lượt Download: 2 | File size: 1.572352 Mb

Nội dung tài liệu

Tải xuống
Link tài liệu:
Tải xuống

Các tài liệu liên quan


Có thể bạn quan tâm


Thông tin tài liệu

ĐỀ THAM KHẢO SỐ 8 Câu 1: Cho hàm số y  f  x có đạo hàm trên  và có bảng biến thiên như hình vẽ. x y y  -1 0 0 + 0 0 -  Phát biểu nào sau đây sai? +  1 0 0 -  -1 A. Giá trị lớn nhất của hàm số y  f  x trên tập  bằng 0. B. Hàm số giảm trên các khoảng (-1;0) và  1;  . C. Đồ thị hàm số y  f  x không có đướng tiệm cận. D. Giá trị nhỏ nhất của hàm số y  f  x trên tập  bằng -1. 1 Câu 2: Cho số phức z thỏa mãn z   3i 1 i A. 8 2. B. 8.  3 . Tìm môđun của z  i.z. C. 4 2. D. 4. Câu 3: Cho hình chóp S.ABC có SA   ABC  , tam giác ABC vuông cân tại B, AC 2a và SA a. Gọi M là trung điểm của SB. Tính thể tích khối chóp S.AMC. A. a3 . 9 B. a3 . 3 C. a3 . 6 D. a3 . 12 Câu 4: Trong các khẳng định sau, khẳng định nào đúng? A. 1 ln x dx  x  C. 3 C.  x  1 dx  1  x  1 4  C. 4 3 1  x  1  2  C. 2 B.  x  1 D. 2x  1 ln 2x  1  C. dx  dx Câu 5: Mặt cầu có tâm O và tiếp xúc với mặt phẳng  P  : x  2y  2z  6 0 có phương trình là A. x2  y2  z2 16. B. x2  y2  z2 9. C. x2  y2  z2 6. D. x2  y2  z2 4. Câu 6: Cho a, b là các số thực thỏa mãn 0  a  b  1. Mệnh đề nào sau đây đúng? 1 A. loga b 1. B. logb a  0. C. loga b  logb a. D. logb a  loga b. Câu 7: Cho a là một số thực dương khác 1. Chọn mệnh đề sai. A. Tập giá trị của hàm số y ax là  0;  . B. Tập giá trị của hàm số y loga x là  0;  . C. Tập xác định của hàm số y loga x là  0;  . D. Tập xác định của hàm số y ax là   ;  . Câu 8: Đồ thị hàm số nào dưới đây không có tiệm cận ngang? A. y  x2  2x  3 . x 2 2 B. y  16x  1. x 2 C. y  2 2017x  2018 . D. y  . 2018x  2019 x 2x  1 và đồ thị hàm số y x2  x  1 cắt nhau tại hai điểm, x kí hiệu  x1; y1 , x2; y2  là tọa độ hai điểm đó. Tính y1  y2. Câu 9: Biết rằng đồ thị hàm số y  A. y1  y2 4. B. y1  y2 6. C. y1  y2 2. D. y1  y2 0. Câu 10: Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng a, cạnh bên SA vuông góc với đáy và SA a 3. Khoảng cách từ D đến mặt phẳng (SBC) bằng A. 2a 5 . 5 B. a 3. C. a . 2 D. a 3 . 2 D. 1 2 a. 2   Câu 11: Cho hình vuông ABCD cạnh a. Khi đó AB.AC bằng: A. a3. B. a2 2. C. 2 2 a. 2 Câu 12: Cho 0  a 1 và x, y là các số thực âm. Khẳng định nào sau đây đúng?  x  loga   x . A. loga     y  log a   y 4 2 2 B. loga x y 2log loga x  loga y . C. loga  xy loga x  loga y. D. log  a      x2y  2loga x  loga y. Câu 13: Trong không gian Oxyz, cho mặt cầu  S :  x  1 2   y  2 2   z  3 2 81. Mặt phẳng tiếp xúc (S) tại điểm P(-5;-4;6) là: A. x  4z  29 0. B. 2x  2y  z  24 0. 2 C. 4x  2y  9z  82 0. D. 7x  8y  67 0. Câu 14: Một hộp chứa 11 quả cầu trong đó có 5 quả màu xanh và 6 quả màu đỏ. Lấy ngẫu nhiên lần lượt 2 quả cầu từ hộp đó. Tính xác suất để 2 lần đều lấy được quả cầu màu xanh. A. 9 . 55 B. 2 . 11 C. 4 . 11 D. 2 . 11 Câu 15: Một người gửi vào ngân hàng 200 triệu với lãi suất ba đầu 4% / năm và lãi hàng năm được nhập vào vốn. Cứ sau một năm lãi suất tăng thêm 0,3%. Hỏi sau 4 năm tổng số tiền người đó nhận được gần nhất với giá trị nào sau đây? A. 239,5 triệu. B. 238 triệu. C. 238.5 triêu. D. 239 triệu. x 3 Câu 16: Có bao nhiêu giá trị m thỏa mãn đồ thị hàm số y  2 có đúng hai đường tiệm x  x m cận? A. 1. B. 4. C. 2. D. 3. Câu 17: Cho hàm số f  x ax3  bx2  cx  d có đồ thị như hình vẽ dưới đây. Số nghiệm của phương trình f  x  10 là A. 0. B. 3. A. 3. B.  C. 2. D. 1.       Câu 18: Cho tam giác ABC, M và N là hai điểm thỏa mãn: BM BC  2AB;CN  xAC  BC. Xác định x để A, M, N thẳng hàng. 1 . 3 C. 2. D.  1 . 2 Câu 19: Có bao nhiêu số có 3 chữ số đôi một khác nhau có thể lập được từ các chữ số 0, 2 ,4, 6, 8? A. 48. B. 60. C. 10. D. 24. 3 Câu 20: Trong không gian Oxyz, cho điểm B(4;2;-3) và mặt phẳng  Q :  2x  4y  z  7 0. Gọi B là điểm đối xứng với B qua mặt phẳng  Q . Tính khoẳng cách từ B đến (Q). A. 10 21 . 21 B. 6 13 . 13 C. 10 13 . 13 D. 2 21 . 7 Câu 21: Gọi z1 và z2 3 4i là hai nghiệm của phương trình az2  bz  c 0 a, b,c  , a 0 . Tính T 2 z1  z2 . A. T = 0. B. T = 5. C. T = 10. D. T = 7. Câu 22: Với n là số nguyên dương thỏa mãn An2  Cnn 11 210, hệ số của số hạng chứa x12 n  2 trong khai triển  x5   bằng  x3  B. 59130x12. A. 59136. D. 59136x12. C. 59130. Câu 23: Hỏi có tất cả bao nhiêu giá trị nguyên của tham số m để hàm số 1 y  m2  1 x3   m 1 x2  2x  3 nghịch biến trên khoảng   ;  ? 3   A. 2. B. 3. C. 4. D. 1. 2 2 Câu 24: Tích tất cả các nghiệm thực của phương trình log3 x  log3 x.log2  16x  log 2 x 0 bằng A. 80. B. 83. Câu 25: Trong mặt phẳng Oxy, cho M  A. MON 600. C. 81.   3;1 và N  B. MON 300.  D. 82.  3;3 . Khẳng định nào sau đây là đúng?  C. MON 1200.  D. MON 1500. Câu 26: Trong không gian Oxyz, cho mặt cầu (S) có phương trình x2  y2  z2  2x  6y  8z  599 0. Biết rằng mặt phẳng    :6x  2y  3z  49 0 cắt (S) theo giao tuyến là đường tròn (C) có tâm là điểm P  a;b;c và bán kính đường tròn (C) là r. Giá trị của tổng S a  b  c  r là A. S = 11. B. S = 13.   C. S = 37. Câu 27: Từ phương trình 1 5  sinx cosx  sin2x  1 D. S = -13.   5 0 ta tìm được sin x   có 4  giá trị bằng 4 A.  3 . 2 B. 3 . 2 C. 2 . 2 D.  2 . 2 Câu 28: Cho các số phức z thỏa mãn z  i 5. Biết rằng tập hợp điểm biểu diễn số phức w iz  1 i là đường tròn. Tính bán kính của đường tròn đó. A. r 20. B. r = 5. C. r = 22. D. r = 4. Câu 29: Cho hàm số y  f  x liên tục và dương trên  , hình phẳng giới hạn bởi các đường   y g x  x  1 . f x2  2x  1 , trục hoành, x 1, x 2 có diện tích bằng 5. Tính tích phân 1 I f  x dx. 0 A. I = 10. B. I = 20. C. I = 5. D. I = 9. Câu 30: Chọn ngẫu nhiên một số nguyên dương nhỏ hơn 21. Xác suất để số được chọn là số chia hết cho 3 bằng A. 1 . 3 B. 2 . 7 C. 7 . 20 D. 3 . 10 Câu 31: Cho hàm số y  f  x liên tục, có đạo hàm trên đoạn  a;b và đồ thị hàm số f  x trên  a;b là đường cong như hình vẽ. Khi đó, mệnh đề nào sau đây đúng? min f  x  f  b . A. x  a;b min f  x  f  x1 . B. x  a;b min f  x  f  a . C. x  a;b min f  x  f  x2  . D. x  a;b Câu 32: Trong mặt phẳng tọa độ Oxy, gọi (H) là tập hợp điểm biểu diễn số phức   w  1 3i z  2 thỏa mãn z 1 2. Tính diện tích của hình (H). A. 8. B. 12 C. 16. D. 4. 5 Câu 33: Cho (H) là hình phẳng giới hạn bởi các đường y  x3  5x2  6x, y 2x2 (phần tô màu). Tính diện tích hình phẳng (H). A. 4 . 3 B. 7 . 4 C. 11 . 12 D. 8 . 3   2 Câu 34: Cho các số thực a,b,c thỏa mãn c2  a 18 và lim  ax  bx  cx  2. Tính  x   P a  b  5c. A. P = 18. Câu 35: Biết F  x F   1  1,F  0 0 và B. P = 12. là một số nguyên hàm của hàm số 0 3x 2 1 1 A. I   3ln2. 8 C. P = 9. D. P = 5. f  x trên đoạn [-1;0], 0 F  x dx  1. Tính I  23x f  x dx. 1 1 B. I   ln2. 8  1 C. I   3ln2. 8 D. I  1  3ln2. 8  3 2 2 2 Câu 36: Cho hàm số y  x  3x  3 m  1 x  3m  1. Có bao nhiêu giá trị nguyên của m để đồ thị hàm số có điểm cực đại và điểm cực tiểu nằm bên trái đường thẳng x 2. A. 3 B. 1 C. 2 D. 0 Câu 37: Cho số phức z thỏa mãn z  1 3i  13. Gọi m, M lần lượt là giá trị nhỏ nhất và lớn nhất của biểu thức P  z  2 2  z  3i 2 . Tính A m M. A. A = 10. B. A = 25. C. A = 34. D. A = 40. Câu 38: Một người muốn gửi tiền vào ngân hàng để đến ngày 15/3/2020 rút được khoản tiền là 50.000.000 đồng (cả vốn ban đầu và lãi). Lãi suất ngân hàng là 0,55%/tháng, tính theo thể thức lãi kép. Hỏi vào ngày 15/4/2018 người đó phải gửi ngân hàng số tiền là bao nhiêu để đáp ứng nhu cầu trên, nếu lãi suất không thay đổi trong thời gian người đó gửi tiền (giá trị gần đúng làm tròn đến hàng nghìn)? A. 43.593.000 đồng. B. 43.833.000 đồng. C. 44.074.000 đồng. D. 44.316.000 đồng. 6 Câu 39: Trong không gian Oxyz, cho hai điểm A(6;5;3) và B(9;-1;6). Trên mặt phẳng (Oxy), lấy điểm M(a;b;c) sao cho MA + MB bé nhất. Tính P a2  b3  c4. A. P = 76. B. P = 352. C. P = 96. D. P = -128. Câu 40: Cho tập A  1;2;4;5;6 , gọi S là tập các số tự nhiên có 3 chữ số đôi một khác nhau tạo thành từ A. Lấy ngẫu nhiên một số từ S. Tính xác suất để số đó là số lẻ. A. 2 . 5 B. 1 . 3 C. 3 . 5 D. 2 . 3 Câu 41: Hàm số f  x liên tục trên [1;2018] và f  2018 x  f  x ,x   1;2018 , A. I = 10100. 2017 2017 1 1  f  x dx 10. Tính I   x. f  x dx. B. I = 20170. C. I = 20180. D. I = 10090. Câu 42: Cho hình chóp S.ABCD có đáy ABCD là hình thang cân, AD 2AB 2CD 2a. Hai mặt phẳng (SAB) và (SAD) cùng vuông góc với mặt phẳng (ABCD). Gọi M, N lần lượt là trung điểm của SB và CD (tham khảo hình vẽ bên). Tính sin góc giữa MN và (SAC), biết thể tích khối chóp S.ABCD bằng a3 3 . 4 A. 5 10 B. 3 10 20 C. 10 20 D. 3 5 10 Câu 43: Cho hàm số ex f 2  x  f  x  f  x  A. 1 e2 . 1 ex y  f  x xác định và liên tục trên [0;2] thỏa mãn và f  0 1. Tính f  2 . B.  5 3e2 . 1 C.  2 . e D.  2 3e2 . Câu 44: Cho dãy số  un  thỏa mãn eu16  4 eu16  e4u1 e4u1 và un1 un  4 với mọi n1. Giá trị lớn nhất của n để log5 un  ln2020 bằng 7 A. 52198. B. 52200. C. 52199. D. 52197. Câu 45: Có bao nhiêu giá trị nguyên của m để phương trình e3x  2e2x ln3  ex ln9  m0 có 3 nghiệm phân biệt thuộc khoảng   ln2;  ? A. 0. B. 3. C. 2. D. 1. Câu 46: Cắt một khối nón tròn xoay có thể tích V thành hai phần bằng một mặt phẳng (P) song song với đáy (như hình vẽ). Tính thể tích khối nón cụt tạo thành, biết mặt phẳng (P) đi qua trung điểm của đường cao SO. 7V . 8 A. C. 5V . 8 B. 3V . 8 D. 3V . 4 Câu 47: Trong không gian tọa độ Oxyz, cho hai điểm A(2;1;3), B(6;5;5). Gọi (S) là mặt cầu có đường kính AB. Mặt phẳng (P) vuông góc với đoạn AB tại H sao cho khối nón đỉnh A và đáy là hình tròn tâm H (giao của mặt cầu (S) và mặt phẳng (P) có thể tích lớn nhất, biết rằng  P   2x  by cz  d 0 với b,c,d . Tính S b  c  d. A. S = -18. B. S = -11. C. S = -24. D. S = -14. Câu 48: Có 20 tấm thẻ được đánh số từ 1 đến 20. Chọn ngẫu nhiên 5 tấm thẻ. Xác suất trong 5 tấm được chọn có 3 tấm mang số lẻ, 3 tấm thẻ mang số chẵn trong đó có ít nhất một tấm thẻ mang số chia hết cho 4 là A. 75 . 94 B. 125 . 646 C. 170 . 646 D. 175 . 646 Câu 49: Cho hàm số f  x có đạo hàm liên tục trên đoạn [0;1], f  x và f  x đều nhận giá trị 1 1 0 0 2 dương trên đoạn [0;1] và thỏa mãn ff 0 2,   x .  f  x   1 dx 2 f  x . f  x dx.   1 Tính  f  x  3 dx? 0 A. 15 . 4 B. 15 . 2 C. 17 . 2 D. 19 . 2 8 Câu 50: Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, mặt bên SAB là tam giác đều, mặt bên SCD là tam giác vuông cân tại S. Gọi M là điểm thuộc đường thẳng CD sao cho BM vuống góc với SA. Tính thể tích V của khối chóp S.BDM? A. V  a3 3 . 16 B. V  a3 3 . 24 C. V  a3 3 . 32 D. V  a3 3 . 48 ĐÁP ÁN 1-D 2-A 3-C 4-C 5-D 6-D 7-B 8-A 9-A 10-D 9 11-A 21-B 31-D 41-D 12-A 22-A 32-C 42-B 13-B 23-A 33-B 43-B 14-C 24-C 34-B 44-C 15-B 25-B 35-C 45-B 16-A 26-A 36-D 46-A 17-B 27-C 37-C 47-A 18-D 28-B 38-C 48-D 19-A 29-A 39-A 49-D 20-A 30-D 40-A 50-D HƯỚNG DẪN GIẢI Câu 1: Chọn D. Dựa vào bảng biến thiên ta thấy +) Giá trị lớn nhất của hàm số y  f  x trên tập  bằng -1. +) Hàm số giảm trên các khoảng (-1;0) và  1;  . +) Đồ thị hàm số y  f  x không có đường tiệm cận. +) Giá trị cực tiểu của hàm số y  f  x trên tập  bằng -1. Chọn D. Câu 2: Chọn A. 1 Ta có z   3i 1 i  3  4 4i  z  i.z  8 8i  z  i.z 8 2. Câu 3: Chọn C. 2 a3 1 1 1 Ta có AC 2a  AB BC a 2  VS.ABC  SA.SABC  a. a 2  . 3 3 2 3   V SA SM SC SM 1 a3    VS.AMC  . Mặt khác S.AMC  VS.ABC SA SB SC SB 2 6 Câu 4: Chọn C. Ta có  x  1 3 3 dx  x  1 d x  1  1  x  1 4  C. 4 Câu 5: Chọn D. Gọi (S) là mặt cầu tâm O và tiếp xúc với  P   R S d 0; P    6 12  22    2 2 2. Suy ra PT mặt cầu (S): x2  y2  z2 4. Câu 6: Chọn D. 10