Cộng đồng chia sẻ tri thức Lib24.vn

Lời giải chi tiết đề thi thử THPT quốc gia 2019 đề 7 - môn toán lớp 12

Gửi bởi: Phạm Thọ Thái Dương 13 tháng 1 2020 lúc 9:48:05 | Được cập nhật: 13 tháng 5 lúc 21:25:02 Kiểu file: DOC | Lượt xem: 492 | Lượt Download: 3 | File size: 1.50272 Mb

Nội dung tài liệu

Tải xuống
Link tài liệu:
Tải xuống

Các tài liệu liên quan


Có thể bạn quan tâm


Thông tin tài liệu

ĐỀ THAM KHẢO SỐ 7 Câu 1: Tính lim 2n  1 . 2.2n  3 1 . C. 1. D. 2. 2 Câu 2: Trong mặt phẳng Oxy cho hai điểm A  2;3 , I  1;  2  . Xác định tọa độ điểm B để I là trung điểm của AB. 3 1 A.  0;  7  . B.  ;  . C. (1;2). D.   2;1 . 2 2 A. 0. B. 3 Câu 3: Cho I x 2 .e x dx, đặt u x 3 , khi đó viết I theo u và du ta được A. I eu du. B. I u.eu du. C. I 3 eu du. Câu 4: Trong các dãy số sau đây, dãy số nào là cấp số cộng? n 1 2 A. un 3n  2017. B. un 3n  2018. C. un   3 . 1 u D. I  e du. 3 n D. un 3 .  2 1  Câu 5: Tập xác định của hàm số y ln  x  2  2  là x   A.  \   1;0;1 . B. (0;1). C.  \  0 . D.  1;   . Câu 6: Cho khối nón có chiều cao bằng 8 và độ dài đường sinh bằng 10. Thể tích của khối nón đó là A. 96 . B. 140 . C. 124 . D. 128 . Câu 7: Cho ba điểm M, N, P thẳng hàng, trong đó điểm N nằm giữa hai điểm M và P. Khi đó các cặp véc tơ nào sau đây cùng hướng?       A. MP, PN . B. MN , PN . C. NM , NP. D. MP, MP. Câu 8: Trong không gian với hệ tọa độ Oxyz , cho điểm M  3;  1; 2  . Điểm N đối xứng với M qua mặt phẳng  Oyz  là A. N  0;  1; 2  . B. N  3;1;  2  . C. N   3;  1; 2  . D. N  0;1;  2  . Câu 9: Trong không gian với hệ tọa độ Oxyz , cho điểm Phương trình mặt phẳng  Q  đi qua các hình chiếu của điểm A lên các trục tọa độ là A.  Q  : x  y  2 z  2 0 B.  Q  : 2 x  2 y  z  2 0 C.  Q  : x y z   1 1 1 2 D.  Q  : x  y  2 z  6 0 2 2 2 1 1 1 Câu 10: Cho f ( x)dx 2 và g ( x)dx  1. Tính I   x  2 f ( x)  3 g ( x)  dx bằng 11 7 17 5 A. I  . B. I  . C. I  . D. I  . 2 2 2 2 Câu 11: Cho hàm số y  f ( x ) xác định trên  \  1 và có bàng biến thiên như hình vẽ bên. Khẳng định nào sau đây là đúng? 1 x y y  1     2 2  A. Hàm số nghịch biến trên  \  1 . B. Hàm số đồng biến trên   ;1 và  1;   . C. Hàm số nghịch biến trên   ;1 và  1;   . D. Hàm số nghịch biến trên . Câu 12: Cho số phức z a  bi. Tìm điều kiện của a và b để số phức z 2  a  bi  là số 2 thuần ảo A. a 2b. C. a b. D. a 0, b 0. 2 Câu 13: Diện tích S của hình phẳng giới hạn bởi parabol  P  : y x  1, tiếp tuyến của  P  tại M(0;1) và trục Oy là: 1 1 7 A. S = 1. B. S = . C. S = . D. S = . 4 3 3 2 x x Câu 14: Phương trình 6.4  13.6  6.9 0 tương đương với phương trình nào sau đây? A. 6 x 2  13 x  6 0. B. x 2  13 x  6 0. C. x 2  1 0. D. x 2  1 0. Câu 15: Trong mặt phẳng tọa đọ Oxy, cho tam giác ABC có A   3;0  , B  3;0  , C  2;6  . Gọi B. a 3b. H(a;b) là tọa độ trực tâm của tam giác đã cho. Tính a + 6b. A. A + 6b = 5. B. a + 6b = 6. C. a + 6b = 7. D. a + 6b = 8. 4 2 4 Câu 16: Cho biết hai đồ thị của hàm số y x  2 x  2 và y mx  nx 2  1 có chung ít nhất 1 điểm cực trị. Tính tổng 1015m + 3n? A. 2017. B. 2018. C. – 2017. D. – 2018. Câu 17: Với mọi số thực a dương, mệnh đề nào sau đây là sai? 2 2 A. ln  e.a  1  2 ln a . B. log 2  4a  2  2log 2 a. 1 1 2 2 C. log a4  2a   log a 2  . D. ln  1  a  2 ln  1  a  . 4 4 Câu 18: Cho hàm số y  f ( x ) xác định trên  và có bảng biến thiên như hình bên. Khẳng định nào sau đây là đúng? x y y  + 1 0  3 ||  +  2  1 A. Hàm số có đúng một cực trị. B. Hàm số có GTLN bằng 2 và GTNN bằng 1. C. Hàm số có giá trị cực tiểu bằng 3. 2 D. Hàm số đạt cực đại tại x = 1 và đạt cực tiểu tại x = 3. 3 2 Câu 19: Biết n là số nguyên dương thỏa mãn An  2 An 100. Hệ số của x5 trong khai triển  1  3x  2n bằng 5 5 5 5 5 5 5 5 A.  3 C10 . B.  3 C12 . C. 3 C10 . D. 6 C10 . Câu 20: Một hộp chứa 5 viên bi màu trắng, 15 viên bi màu xanh, 35 viên bi màu đỏ (mỗi viên chỉ có một màu). Lấy ngẫu nhiên từ hộp ra 7 viên bi. Xác suất để trong 7 viên bi lấy được có ít nhất 1 viên màu đỏ là C557  C207 C357 1 6 1 . A. C35C20 . B. C. C35 . D. 7 . C557 C55 x , y , z xyz Câu 21: Cho là các số thực dương tùy ý khác 1 và khác 1. Đặt a log x , b log z y. Mệnh đề nào sau đây là đúng? 3ab  2a 3ab  2ab 3 2 3 2 . . A. log xyz  y z   B. log xyz  y z   a  b 1 a  b 1 3ab  2a 3ab  2b 3 2 3 2 . . C. log xyz  y z   D. log xyz  y z   ab  a  b ab  a  b 1 3 2 Câu 22: Cho hàm số y  x  mx   2m  1 x  1, với m là tham số. Tìm tất cả các giá trị 3 của m để hàm số đã cho có cực trị. A. m  1. B. m. C. m 1. D. Không có giá trị nào của m. Câu 23: Một hộp chứa 13 quả bóng gồm 6 quả bóng màu xanh và 7 quả bóng màu đỏ. Chọn ngẫu nhiên đồng thời 2 quả bóng từ hộp đó. Xác suất để 2 quả cầu chọn ra cùng màu bằng 6 8 7 5 . A. B. . C. . D. . 13 13 13 13 Câu 24: Tìm m để giá trị nhỏ nhất của hàm số f  x 3x3  4x2  2 m 10 trên đoạn [1;3] bằng -5? A. m = -8. 15 B. m . 2 C. m8. D. m 15. 1 3 2 Câu 25: Số giá trị nguyên dương của m để hàm số y  x  3x   m 2017 x  2018 3 nghịch biến trên khoảng (0;2) là A. 2015. B. 2017. C. 2016. D. 2018.   2 Câu 26: Cho hàm số y  f  x có f  x  x  2  x  5  x  1 . Hàm số y  f x đồng biến trên khoảng nào dưới đây? A. (-2;-1). B. (-2;0). C. (0;1). D. (-1;0). Câu 27: Cho hình chóp S.ABCD có đáy ABC vuông tại B, (SAC) vuông góc với (ABC), biết SB SC a, SA BC a 3. Gọi  là góc tạo bởi SA và (SBC). Tính sin. 2 3 1 1 . . . . A. sin  B. sin  C. sin  D. sin  13 13 3 13 2 13 3 Câu 28: Cho hình thang cong (H) giới hạn bởi các đường y ex, y 0, x 0 và x ln8. Đường thẳng x k 0  k  ln8 chia (H) thành hai phần có diện tích là S 1 và S2. Tìm k để S1 = S2? 9 2 A. k ln . B. k ln4. C. k  ln4. D. k ln5. 2 3  u1 0 ;u218 nhận giá trị Câu 29: Cho dãy số  un  bởi công thức truy hồi sau:   un1 n  un;n 1 nào sau đây? A. 23653. B. 46872. C. 23871. D. 23436.   2 Câu 30: Biết lim  4x  3x  1   ax  b  0. Tính a  4b ta được  x   A. 3. B. 5. C. -1. D. -2. Câu 31: Cho một hình trụ tròn xoay và hình vuông ABCD cạnh a có hai đỉnh liên tiếp A, B nằm trên đường tròn đáy thứ nhất của hình trụ, hai đỉnh còn lại nằm trên đường tròn đáy thứ hai của hình trụ. Mặt phẳng (ABCD) tạo với đáy hình trụ góc 450. Tình thể tích của khối trụ. A. 3a3 . 16 B. 2a3 . 16 a3 3 2a3 D. . . 16 16 Câu 32: Cho hàm số y  f  x . Hàm số y  f  x có đồ thị C.   2 như hình bên. Hỏi hàm số f x có bao nhiêu điểm cực đại? A. B. C. D. 2. 3. 1. 0. Câu 33: Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, cạnh SA vuông góc với mặt phẳng (ABCD), SA  AB a, AD 3a. Gọi M là trung điểm BC. Tính cos góc tạo bởi hai mặt phẳng (ABCD) và (SDM). 6 5 3 1 A. . B. . C. . D. . 7 7 7 7 Câu 34: Cho hàm số f  x liên tục và có đạo hàm trên  và f  x e f  x  2x  3 ; f  0 ln2. 2 Tính f  x dx ? 1 A. 6ln2 + 2. B. 6ln2 – 2. C. 6ln2 – 3. D. 6ln2 + 3. 4 Câu 35: Có bao nhiêu số m sao cho phương trình bậc hai 2z2  2 m 1 z  2m 10 có hai nghiệm phức phân biệt z1, z2 đều không phải là số thực và thỏa mãn z1  z2  10. A. 1. B. 2. C. 3. D. 4. Câu 36: Cho hàm số y  f  x xác định trên  \   1 , liên tục trên từng khoảng xác định và có bảng biến thiên như hình dưới đây. x y y  -1 + +  0 0 -1  -  0  2  f x   f  x  x Số nghiệm của phương trình     1 là x A. 1. B. 0. C. 2. D. 3. Câu 37: Trong các khối trụ coay có diện tích toàn phần bằng S không đổi, khối trụ có điện tích lớn nhất bằng A. V  S3 B. V  S3 . 72 C. V  S3 . 54 D. V  S3 . 542 x 1 y z 2   Câu 38: Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d1 : và 3 1 2 x  1 y 2 z   . Mặt phẳng (P) cách đều hai đường thẳng d 1 và d2 có đường thẳng d2 : 1 1 2 phương trình là A. 2x  4y  z  6 0. B. 3x  2y  z  6 0. C. 2x  4y  z  7 0. D. 3x  2y  z  7 0. 722 . Câu 39: Cho số phức z a  bi  a, b  thỏa mãn đồng thời hai điều kiện z  z  1 i và biểu thức A  z  2 2i  z  3 i đạt giá trị nhỏ nhất. Giá trị của biểu thức a  b bằng A. -1. B. 2. C. -2. D. 1. Câu 40: Cho hình lăng trụ đứng ABCD.ABCD có đáy là hình vuông cạnh a và chiều cao AA 3a. Trên CC lấy điểm M, trên DD lấy điểm N sao cho CM 2MC và DN 2ND. Tính cosin góc giữa hai mặt  BMN  và (ABCD). A. 1 . 3 B. 1 . 2 1 . 6 C. D. 2 . 6 Câu 41: Cho hàm số y  f  x xác định trên  và có đồ thị của hàm số f  x , biết ff 3   2  ff 0  các khẳng định sau: 1) Hàm số y  f  x có 2 điểm cực trị.  1 và 2) Hàm số y  f  x đồng biến trên khoảng   ;0 5 f  x  f  3 . 3) Max  0;3 4) Min f  x  f  2 .  f  x  f  0 . 5)  Max  ;2 Số khẳng định đúng là A. 2. B. 3. C. 4. D. 5. Câu 42: Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng  P  :2y  z  3 0 và điểm A(2;0;0). Mặt phẳng    đi qua A, vuông góc với (P), cách gốc tọa độ O một khoảng bằng 4 và cắt các tia Oy, Oz lần lượt tại các điểm B, C khác O. Thể tích khối tứ diện OABC bằng: 3 8 16 . A. 8. B. 16. C. . D. 3 3 Câu 43: Cho hàm số y  f  x liên tục trên , thỏa mãn điều kiện 1  2x 1 f x   f  x  3 ,x         . Tích phân f  x dx bằng   f  0  1 0 1 5 1 . A. B.  . C. . 4 6 3 Câu 44: Cho hai số thực a, b thỏa mãn điều kiện a  b  1 và Giá trị của biểu thức P  D.  2 . 3 1 1   2018. loga b logb a 1 1  bằng logab b logab a A. P  2014. B. P  2016. C. P  2018. D. P  2020. Câu 45: Biết hàm số f  x  f  2x có đạo hàm bằng 5 tại x 1 và đạo hàm bằng 7 tại x 2. Tính đạo hàm của hàm số f  x  f  4x tại x 1. A. 8. B. 12. C. 16. D. 19. z1  z2 Câu 46: Cho số phức z  , biết z2 5 z1 và z2  2 z2  3z1 . Phần thực của z z1 bằng 55 12 55  12 . . . . A. B. C.  D. 12 55 12 55 Câu 47: Trong không gian với hệ trục tọa độ Oxyz, cho các điểm 3 1 3 A a;0;0 , B 0;b;0 ,C  0;0;c , trong đó a  0, b  0, c  0 và   5. Biết mặt phẳng a b c 2 2 2 304 , khi đó (ABC) tiếp xúc với mặt cầu (S) có phương trình là  x  3   y  1   z  3  25 thể tích của khối tứ diện OABC nằm trong khoảng nào?  1 A.  0;  . B. (0;1). C. (1;3). D. (4;5).  2 6 Câu 48: Có bao nhiêu nghiệm nguyên thuộc khoảng (-9;9) của tham số m để bất phương   2 trình sau có nghiệm thực: 3log x 2log m x  x   1 x 1 x ?   A. 6. B. 7. C. 10. D. 11. Câu 49: Hai bạn Bình và Lan cùng dự thi trong kì thi THPT Quốc gia 2018 và ở hai phòng thi khác nhau. Mỗi phòng thi có 24 thí sinh, mỗi môn thi có 24 mã đề khác nhau. Đề thi được sắp xếp và phát cho thí sinh một cách ngẫu nhiên. Xác suất để hai môn thi Toán và Tiếng Anh, Bình và Lan có chung một mã đề thi bằng nhau? 32 46 23 23 . . . . A. B. C. D. 235 2209 288 576 Câu 50: Giả sử hàm số y  f  x đồng biến trên  0;  ; liên tục và nhận giá trị dương trên  0; và thỏa mãn f  3  2 2 và  f  x   x  1 . f  x . Mệnh đề nào dưới đây đúng? 3 A. 2613  f 2  8  2614. B. 2614  f 2  8  2615. C. 2618  f 2  8  2619. D. 2616  f 2  8  2617. HƯỚNG DẪN GIẢI 7 1-B 11-C 21-C 31-D 41-C 2–A 12–C 22–C 32-D 42-C 3–D 13-C 23-A 33-A 43-B 4-B 14 -D 24-C 34-B 44-A 5-A 15-C 25-B 35-A 45-D 6-A 16-D 26-D 36-B 46-A 7-A 17-C 27-A 37-C 47-C 8-C 18-D 28-A 38-C 48-B 9-B 19-A 29-A 39-D 49-C 10-D 20-B 30-B 40-C 50-A Câu 1: Chọn B. 1 1 n 2n  1 2 1 . lim Ta có: lim n 3 2.2  3 2 n 2 2 Câu 2: Chọn A.  x A  xB 2 x1  2  xB 2   B  0;  7  . Để I là trung điểm của AB thì   y A  yB 2 y1  3  y B  4 Câu 3: Chọn D. 1 u Đặt u  x3  du 3x 2 dx. Khi đó I  e du. 3 Câu 4: Chọn B. Với un 3n  2018 ta có un 1  un 3 nên un 3n  2018 là cấp số cộng. Câu 5: Chọn A. 2  1 1  2 1  x  2  20  x    0 x    x x  x   1;0;1 . Điều kiện:  x  x 0  x 0  x 0  Câu 6: Chọn A. 1 2 1 2 2 2 Bán kính mặt đáy của khối nón là: r  10  8 6  V   r h   .6 .8 96 . 3 3 Câu 7: Chọn  A. Ta có: MN , NP cùng hướng. Câu 8: Chọn C. Gọi H là hình chiếu của điểm M lên mặt phẳng  Oyz   H  0;  1; 2  . Điểm N đối xứng với M qua mặt phẳng  Oyz   H là trung điểm của đoạn thẳng MN.  xN 2 xH  xM  3  Suy ra:  y N 2 yH  yM  1  N   3;  1; 2  .  z 2 z  z 2 H M  N Câu 9: Chọn B.  B  1;0;0   Gọi B, C, D lần lượt là hình chiếu của A lên các trục Ox, Oy, Oz   C  0;  1;0    D  0;0; 2  x y z Suy ra phương trình mặt phẳng  Q  :   1  2 x  y  z  2 0. 1 1 2 Câu 10: Chọn D. 8 2 2 2 x2 Ta có: I  xdx  2 f ( x)dx  3g ( x)dx  2 1 1 1 2 2 2 5  2 f ( x)dx  3 g ( x)dx  . 2 1 1 1 Câu 11: Chọn C. Dựa vào bảng biến thiên ta thấy hàm số nghịch biến trên các khoảng   ;1 và  1;   . Câu 12: Chọn C. Ta có: z 2  a  bi  a 2  b 2  2abi. Để z 2 là số thuần ảo thì a 2  b 2 0  a b. Câu 13: Chọn C. Tiếp tuyến của  P  tại M(1;0) là d : y 2 x  2. 2 Phương trình hoành độ giao điểm x 2  1 2 x  2  x 2  2 x  1 0  x 1. Câu 14: Chọn D.  2  x 2    x x 3  x 1  3  4  2 2 x x  Ta có: 6.4  13.6  6.9 0  6.    13.    6 0    x  1 x 9  3  2 3      2  3  Do đó phương trình 6.42  13.6 x  6.9 x 0 tương đương với phương trình x 2  1 0. Câu 15: Chọn C.  .BC 0  AH (*) Vì H là trực tâm của ABC     BH . AC 0    a 2  AH  a  3; b   BC   1;6    a  3  6b 0   (*)    Mà:   và   5  5(a  3)  6b 0  BH  a  3; b   AC  5;6   b  6 5 Vậy a  6b 2  6. 7. 6 Câu 16: Chọn D.  x 0  y 2 3 Với y x 4  2 x 2  2 ta có: y 4 x  4 x; y 0    x 1  y 1 Với y mx 4  nx 2  1 ta có y 4mx3  2nx.  m  n  1 1  m  2   1015m  3n  2018. Do hàm số có chung điểm cực trị nên   4m  2n 0  n 4 Câu 17: Chọn C. log a  2a 2  log a 2  2 1 1 2 Ta có: log a4  2a     log a 2  . nên đáp án C sai. 4 log a a 4 4 4 Câu 18: Chọn D. Dựa vào bảng biến thiên ta thấy: + Hàm số có 2 cực trị. + Hàm số có giá trị cực đại bằng 2 và giá trị cực tiểu bằng -1. + Hàm số đạt cực đại tại x = 1 và đạt cực tiểu tại x = 3. Câu 19: Chọn A. 9 3 2 Ta có: An  2 An  10 n! n!  2.  n  2   n  1 n  2  n  1 100  n 5.  n  3 !  n  2  ! Có:  1  3 x   C 10 k 10 k 0   3x  k 10  C10k   3 x k . k k 0 Số hạng chứa x 5  k 5  a5 C105   3 x 5 . 5 Câu 20: Chọn B. 7 Số cách lấy 7 viên bi từ hộp là C55 . 7 Số cách lấy 7 viên bi không có viên bi đỏ là C20 . 7  Số cách lấy 7 viên vi có ít nhất 1 viên đỏ là C557  C20  xác suất là C557  C207 . C557 Câu 21: Chọn C. Ta có: log xyz  y z 3 2 log y  y 3 z 2    log  xyz  y  3  2 log y z log y x  1  log y z  3 2 b 1 1 1  a b  3ab  2a . ab  a  b Câu 22: Chọn C. Ta có: y  x 2  2mc  2m  1. Để hàm số có cực trị thì phương trình y 0 có hai nghiệm phân biệt    0  m 2  2m  1  0   m  1  0  m 1. 2 Câu 23: Chọn A. 2 Số cách chọn 2 quả từ hộp 13 quả là C13 , ta có các trường hợp sau: 2 + TH1: 2 quả đều màu đỏ, suy ra có C7 cách. 2 + TH2: 2 quả đều màu xanh suy ra có C6 cách. Suy ra xác suất cần tính bằng C72  C62 6  . C132 13 Câu 24: Chọn C. Ta có f  x 9x2  8x x 9x  8  0 x   1;3  Do đó hàm số f  x 3x3  4x2  2 m 10 đồng biến trên đoạn  1;3 f  x  f  11 2m 21 5  m8. Suy ra Min  1;3 Câu 25: Chọn B. Ta có y x2  6x  m 2017. Hàm số nghịch biến trên khoảng  0;2  y 0,x  0;2 Suy ra x2  6x  m 2017 0,x  0;2  m x2  6x  2017,x  0;2 (1) Xét hàm số g x  x2  x  2017, x  0;2  g x  2x  6 0  x 3. Ta có bảng biến thiên hàm số g x như sau x 0 2 10