Cộng đồng chia sẻ tri thức Lib24.vn

Giải đề thi thử Toán THPT Quốc gia năm học 2018 – 2019 trường THPT chuyên Thái Bình lần 1

Gửi bởi: Phạm Thọ Thái Dương 10 tháng 4 2019 lúc 9:13 | Được cập nhật: 20 tháng 2 lúc 10:25 Kiểu file: PDF | Lượt xem: 326 | Lượt Download: 0 | File size: 1.524742 Mb

Nội dung tài liệu

Tải xuống
Link tài liệu:
Tải xuống

Các tài liệu liên quan


Có thể bạn quan tâm


Thông tin tài liệu

SỞ GIÁO DỤC & ĐÀO TẠO THÁI BÌNH

TRƯỜNG THPT CHUYÊN

ĐỀ THI THỬ THPT QUỐC GIA LẦN I - MÔN TOÁN

NĂM HỌC 2018 - 2019
Thời gian làm bài:90 phút;
(50 câu trắc nghiệm)

MÃ ĐỀ 357

Họ và tên học sinh:..................................................................... Số báo danh: .........................
Câu 1: Cho hàm số y  f ( x) có bảng biến thiên như hình vẽ. Số nghiệm của phương trình f ( x)  2  0 là:

A. 1.

Câu 2: Đồ thị hàm số y  
A. 3 .

D. 0 .

C. 3 .

B. 2 .

1 4
3
x  x 2  cắt trục hoành tại mấy điểm?
2
2

B. 4.

D. 0.

C. 2 .
4

2

Câu 3: Tìm tất cả giá trị thực của tham số m để đồ thị hàm số y = x - 2mx + 2m - 3 có ba điểm cực trị
là ba đỉnh của tam giác cân.
A. m ³ 0.
B. m > 0.
C. m ¹ 0.
D. m < 0.
Câu 4: Cho một khối chóp có đáy là đa giác lồi n cạnh. Trong các mệnh đề sau đây, mệnh đề nào đúng:
A. Số mặt và số đỉnh bằng nhau.
B. Số đỉnh của khối chóp bằng 2n  1.
C. Số mặt của khối chóp bằng 2n.
D. Số cạnh của khối chóp bằng n  1.
-4

Câu 5: Tìm tập xác định của hàm số y = ( x 2 - 3x) .
A. D   0;3 .

B. D   \ 0;3 .

C. D   ;0    3;   .

D. D   .

Câu 6: Với các số thực a, b bất kỳ, mệnh đề nào dưới đây đúng ?
A.

5a
 5a b.
b
5

B.

a
5a
b

5
.
5b

C.

5a
 5ab.
b
5

D.

5a
 5a b.
b
5

x 1
trên đoạn 1; 2 là:
2x 1
2
1
A. .
B. 0.
C. .
D.  2.
3
5
Câu 8: Cho hàm số y  f (x ) liên tục trên  và có bảng xét dấu của đạo hàm như hình vẽ.

Câu 7: Giá trị nhỏ nhất của hàm số y 

0
x 
1
 0 
f'(x)



2
0

Hàm số y  f (x ) có bao nhiêu điểm cực trị?
A. 4 .
B. 1.
C. 2 .
Câu 9: Đồ thị như hình vẽ là đồ thị của hàm số nào dưới đây?



4
0




D. 3 .

Trang 1/6 - Mã đề thi 357

A. y = x3 - 3x 2 + 4.

B. y = -x3 +3x 2 - 4 .

C. y = x3 - 3x 2 - 4.

D. y = -x3 - 3x 2 - 4.

Câu 10: Cho đường thẳng d2 cố định, đường thẳng d1 song song và cách d2 một khoảng cách không đổi.
Khi d1 quay quanh d2 ta được
A. Hình tròn
B. Khối trụ
C. Hình trụ
D. Mặt trụ
Câu 11: Cho a  0, a  1 và x, y là hai số thực thỏa mãn xy  0 . Mệnh đề nào dưới đây đúng?
A. log a  x  y   log a x  log a y.

B. log a x 2  2 log a x.

C. log a  xy   log a x  log a y .

D. log a  xy   log a x  log a y.

Câu 12: Tính thể tích của vật thể tròn xoay khi quay mô hình (như hình vẽ) quanh trục DF :

10 3
5 3
10 3

a.
a.
a.
B. a3 .
C.
D.
7
2
9
3
Câu 13: Khối đa diện đều loại 5, 3 có tên gọi nào dưới đây?
A. Khối mười hai mặt đều.
B. Khối lập phương.
C. Khối hai mươi mặt đều.
D. Khối tứ diện đều.
Câu 14: Từ các chữ số 0,1, 2,3,5 có thể lập thành bao nhiêu số tự nhiên không chia hết cho 5 gồm 4 chữ
số đôi một khác nhau?
A. 120.
B. 54.
C. 72.
D. 69.
A.

6

2 

3
Câu 15: Cho khai triển  x 
 với x  0 . Tìm hệ số của số hạng chứa x trong khai triển trên.
x


A. 80.
B. 160.
C. 240.
D. 60.
Câu 16: Mệnh đề nào trong các mệnh đề dưới đây sai?
x 2 1

 2018 
A. Hàm số y  
đồng biến trên  .

  
B. Hàm số y  log x đồng biến trên (0; ) .
C. Hàm số y  ln( x ) nghịch biến trên khoảng (;0) .

D. Hàm số y  2 x đồng biến trên  .
Câu 17: Cho hàm số y  f  x  có bảng biến thiên như sau:

x



y
y

0



1







0



2

1





Mệnh đề nào dưới đây đúng?
A. Hàm số nghịch biến trên  ;1 .
Trang 2/6 - Mã đề thi 357

B. Hàm số nghịch biến trên  ;0   1;   .
C. Hàm số đồng biến trên  0;1 .
D. Hàm số đồng biến trên  ; 2  .
Câu 18: Một gia đình cần xây một bể nước hình hộp chữ nhật để chứa 10m3 nước. Biết mặt đáy có kích
thước chiều dài 2,5m và chiều rộng 2m . Khi đó chiều cao của bể nước là:
A. h  3m.
B. h  1m.
C. h  1,5m.
D. h  2m.
Câu 19: Tìm đạo hàm của hàm số y  log 2  2 x  1 .
A. y 

2
.
2x 1

B. y 

1
.
2x 1

C. y 

1
.
 2 x  1 ln 2

D. y 

2
.
 2 x  1 ln 2

Câu 20: Cắt hình nón đỉnh S bởi mặt phẳng đi qua trục ta được một tam giác vuông cân, cạnh huyền bằng
a 2 . Thể tích khối nón là :
A.  2 a 3 .
B.  2 a 3 .
C.  2 a 3 .
D.  2 a 2 .
4
12
12
6
Câu 21: Cho hàm số y  sin 2 x. Mệnh đề nào sau đây đúng?


A. 2y ' y ''  2cos  2x   .
B. 4y  y''  2.
4

C. 4y  y ''  2.
D. 2y ' y '.tanx  0.



Câu 22: Cho các hàm số lũy thừa y  x , y  x , y  x có đồ thị như hình vẽ. Mệnh đề đúng là:
y

6

y=xβ

y=xα

4

2

‐2

y=xγ

‐1 O

1

2

x

‐1

A.      .

B.      .

C.      .

D.      .

2018
. Mệnh đề nào dưới đây đúng?
x 1
A. Đồ thị hàm số có tiệm cận đứng là đường thẳng x  1, tiệm cận ngang là đường thẳng y  0.
B. Đồ thị hàm số có tiệm cận đứng là đường thẳng x  1, tiệm cận ngang là đường thẳng y  0.
C. Đồ thị hàm số có tiệm cận đứng là đường thẳng x  1, không có tiệm cận ngang.
D. Đồ thị hàm số có tiệm cận đứng là đường thẳng x  1, tiệm cận ngang là đường thẳng y  2018.

Câu 23: Cho hàm số y 

Câu 24: Cho hàm số y  f ( x) liên tục trên  \ 1 có bảng biến thiên như hình vẽ. Tổng số đường tiệm

cận đứng và đường tiệm cận ngang của đồ thị hàm số y  f ( x)

A. 1.
B. 4 .
C. 2 .
D. 3.
Câu 25: Cho hàm số y  f ( x) có đạo hàm trên khoảng  a; b  . Xét các mệnh đề sau:
Trang 3/6 - Mã đề thi 357

I. Nếu hàm số y  f ( x) đồng biến trên khoảng  a; b  thì f   x   0, x   a; b  .
II. Nếu f   x   0, x   a; b  thì hàm số y  f ( x) nghịch biến trên khoảng  a; b  .
III. Nếu hàm số y  f ( x) liên tục trên  a; b  và f   x   0, x   a; b  thì hàm số y  f ( x) đồng

biến trên đoạn  a; b  .
Số mệnh đề đúng là:
A. 3 .
B. 0 .
C. 2 .
D. 1.
Câu 26: Cho hình chóp tứ giác đều có cạnh đáy bằng x . Diện tích xung quanh gấp đôi diện tích đáy. Khi
đó thể tích khối chóp bằng:
3 3
3 3
3 3
3 3
A.
B.
C.
D.
x.
x.
x.
x.
12
2
3
6
x 1
Câu 27: Tìm tất cả các giá trị thực của tham số m sao cho hàm số y 
nghịch biến trên khoảng
xm
 ; 2  .
A. 1,   .

B.  2,   .

C.  2,   .

D. 1,   .
18

1
12

Câu 28: Sau khi khai triển và rút gọn thì P ( x)  1  x    x 2   có tất cả bao nhiêu số hạng?
x

A. 27.
B. 28.
C. 30.
D. 25.

Câu 29: Cho hàm số y  f ( x) có đạo hàm trên  . Xét các hàm số g ( x )  f  x   f  2 x 



h( x)  f ( x)  f (4 x) . Biết rằng g '(1)  18 và g '(2)  1000 . Tính h '(1) :
A. 2018 .
B. 2018 .
C. 2020 .
D. 2020 .
Câu 30: Cho lăng trụ đứng ABC.A’B’C’, đáy ABC là tam giác vuông cân tại A. E là trung điểm của
B’C’, CB’ cắt BE tại M. Tính thể tích V của khối tứ diện ABCM biết AB = 3a , AA’ = 6a .
A. V  7a3 .
B. 6 2a 3 .
C. V  8a3 .
D. V  6a3 .
Câu 31: Cho hình chóp S . ABCD có đáy ABCD là hình vuông cạnh a , SA vuông góc với đáy và
SA  2a . Gọi M là trung điểm của SD . Tính khoảng cách d giữa đường thẳng SB và mặt phẳng
( ACM )
a
3a
2a
A. d  .
B. d  a.
C. d  .
D. d  .
3
2
3
Câu 32: Biết hàm số y  ax 4  bx 2  c  a  0  đồng biến trên  0;   , mệnh đề nào dưới đây đúng?
A. a  0; b  0.

B. ab  0.

C. a  0; b  0.

D. ab  0.

Câu 33: Cho các số thực a, b sao cho 0  a, b  1 , biết rằng đồ thị các hàm số y  a x và y  log b x cắt

nhau tại điểm M( 2018; 5 20191 ) . Mệnh đề nào dưới đây đúng?
A. a  1, b  1.
B. a  1,0  b  1.
C. 0  a  1, b  1.

D. 0  a  1,0  b  1.

2x  5
có đồ thị  C  và điểm M  1; 2  . Xét điểm A bất kì trên  C  có
x 1
x A  a ,  a  1 . Đường thẳng MA cắt  C  tại điểm B (khác A ) . Hoành độ điểm B là:
A. 1  a .
B. 2  a .
C. 2a  1 .
D. 2  a .
Câu 35: Cho hình chóp tứ giác đều S . ABCD có cạnh đáy bằng a . Gọi M , N lần lượt là trung điểm của
SB và SD . Biết AM vuông góc với CN . Tính bán kính mặt cầu ngoại tiếp hình chóp S . ABCD .
2a
3a
4a
a
.
.
.
A.
B.
C.
.
D.
10
10
10
10
Câu 36: Cho hàm số f thỏa mãn f  cot x   sin 2 x  cos 2 x, x   0;  . Giá trị lớn nhất của hàm số
Câu 34: Cho hàm số y 

g  x   f  sin 2 x  . f  cos 2 x  trên  là.

Trang 4/6 - Mã đề thi 357

6
1
B.
C. 19 .
D. 1 .
.
.
125
20
500
25
Câu 37: Trong một trò chơi điện tử, xác suất để game thủ thắng trong một trận là 0, 4 (không có hòa).
Hỏi phải chơi tối thiểu bao nhiêu trận để xác suất thắng ít nhất một trận trong loạt chơi đó lớn hơn 0,95 .
A. 6.
B. 7.
C. 4.
D. 5.
Câu 38: Cho ba hình cầu tiếp xúc ngoài nhau từng đôi một và cùng tiếp xúc với một mặt phẳng. Các tiếp
điểm của các hình cầu trên mặt phẳng lập thành tam giác có các cạnh bằng 4 , 2 và 3 . Tích bán kính của
ba hình cầu trên là:
A. 12.
B. 3.
C. 6.
D. 9.
Câu 39: Cho hàm số y  f ( x) có đạo hàm liên tục trên  và có đồ thị hàm số y  f ( x) như hình vẽ.
Đặt g ( x )  f ( x 3 ) . Tìm số điểm cực trị của hàm số y  g ( x) .
A.

A. 3 .

B. 5 .

C. 4 .

D. 2
3

Câu 40: Có bao nhiêu giá trị nguyên của tham số m để đồ thị hàm số y = x - 8x 2 + (m2 +11)x - 2m 2 + 2
có hai điểm cực trị nằm về hai phía của trục Ox.
A. 4.
B. 5.
C. 6.
D. 7.
Câu 41: Cho khối chóp S.ABC có thể tích bằng 16cm3 . Gọi M, N, P lần lượt là trung điểm của các cạnh
SA, SB, SC. Tính thể tích V của khối tứ diện AMNP.
A. V  8cm3 .
B. V  14cm3 .
C. V  12cm3 .
D. V  2cm3 .

x2  2 x  3
và đường thẳng d : x  y  1  0 . Qua điểm M tùy ý trên
2
đường thẳng d kẻ 2 tiếp tuyến MT1 , MT2 tới ( P) (với T1 , T2 là các tiếp điểm). Biết đường thẳng T1T2
luôn đi qua điểm I (a; b) cố định. Phát biểu nào sau đây đúng?
A. b  (1;3).
B. a  b.
C. a  2b  5.
D. a.b  9.

Câu 42: Cho parabol ( P) : y 

Câu 43: Cho a, b là các số thực và hàm số f ( x)  a log 2019

f (2018ln 2019 )  10 . Tính P  f  2019ln 2018  .
A. P  4.

B. P  2.

C. P  2.





x 2  1  x  b sin x.cos  2018x   6. Biết

D. P  10.

Câu 44: Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép (tức là tiền lãi của kỳ
trước được cộng vào vốn của kỳ kế tiếp) với kì hạn 3 tháng, lãi suất 2% một quý. Sau đúng 6 tháng,
người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước đó. Tổng số tiền người đó nhận được
sau 1 năm gửi tiền vào ngân hàng gần bằng với kết quả nào sau đây. Biết rằng trong suốt thời gian gửi
tiền lãi suất ngân hàng không thay đổi và người đó không rút tiền ra.
A. 212 triệu đồng.
B. 216 triệu đồng.
C. 210 triệu đồng.
D. 220 triệu đồng.
1

Câu 45: Số các giá trị nguyên của tham số m để hàm số y  log  mx  m  2  xác định trên  ;   là:
2

A. 4.
B. 5.
C. Vô số.
D. 3.
Trang 5/6 - Mã đề thi 357

x 1
có đồ thị (C) và A là điểm thuộc (C). Tính giá trị nhỏ nhất của tổng các
x 1
khoảng cách từ A đến các đường tiệm cận của (C).
A. 2 3 .
B. 2 .
C. 3.
D. 2 2 .
Câu 46: Cho hàm số y 

Câu 47: Cho hình hộp đứng ABCD.ABCD có AB = a , AD = 2a , BD = a 3 . Góc tạo bởi AB và mặt
phẳng ABCD bằng 60o. Tính thể tích của khối chóp D.ABCD.
3 3
2 3 3
A.
B. 3a 2 .
C. a3 .
D.
a.
a.
3
3
Câu 48: Một bảng vuông gồm 100 100 ô vuông đơn vị. Chọn ngẫu nhiên một ô hình chữ nhật. Tính xác
suất để ô được chọn là hình vuông (trong kết quả lấy 4 chữ số ở phần thập phân).
A. 0,0134.
B. 0,0133.
C. 0,0136.
D. 0,0132.


 
 
 
Câu 49: Cho hai vectơ a , b thỏa mãn: a  4; b  3; a  b  4 . Gọi α là góc giữa hai vectơ a , b . Chọn

phát biểu đúng.
1
3
C. cos   .
D. cos   .
3
8

  900 , và CSA
  1200 . Tính
Câu 50: Cho hình chóp S . ABC có SA  SB  SC  a , AS
B  600 , BSC
khoảng cách d giữa hai đường thẳng AC và SB .
a 22
a 3
a 3
a 22
.
A. d 
B. d 
C. d 
D. d 
.
.
.
22
4
3
11

A.   600.

B.   300.

----------- HẾT ----------

Trang 6/6 - Mã đề thi 357

Sản phẩm của tập thể giáo viên nhóm strong team toán vd-vdc

bản đọc để soát lỗi

SỞ GD VÀ ĐT THÁI BÌNH

ĐỀ THI THỬ THPT QUỐC GIA LẦN I - MÔN TOÁN

TRƯỜNG THPT CHUYÊN

NĂM HỌC 2018-2019
Thời gian làm bài 90 phút

Câu 1.

Cho hàm số y = f ( x ) có bảng biến thiên như hình vẽ.

Hỏi tập nghiệm của phương trình f ( x ) + 2 = 0 có bao nhiêu phần tử ?
A. 1 .

C. 3 .

B. 2 .

D. 0 .

Lời giải
Tác giả:Nguyễn Duy Chiến
Chọn B
Ta có f ( x ) + 2 = 0  f ( x ) = −2 . Phương trình đã cho là phương trình hoành độ giao điểm của

Câu 2.

đồ thị hàm số với đường thẳng y = −2 . Dựa vào bảng biến thiên ta thấy phương tình có 2
nghiệm.
1
3
Đồ thị hàm số y = − x 4 + x 2 + cắt trục hoành tại mấy điểm?
2
2
A. 3 .
B. 4.
C. 2 .
D. 0.
Lời giải
Tác giả:Nguyễn Duy Chiến
Chọn C

là ba đỉnh của một tam giác cân.
A. m  0 .
B. m  0 .

C. m  0 .

D. m  0 .

Lời giải
Tác giả:Trần Thị Thanh Thủy
Chọn B
TXĐ D =
Cách 1.

)

Do hàm số đã cho là hàm số trùng phương nên để đồ thị hàm số y = x 4 − 2mx 2 + 2m − 3 có ba
điểm cực trị là ba đỉnh của một tam giác cân thì phương trình y = 0 phải có 3 nghiệm thực phân
biệt.
 x 2 = m có hai nghiệm phân biệt x  0
m0.
Cách 2. (Dùng cho trắc nghiệm)

1

(

Ta có y = 4 x3 − 4mx = 4 x x 2 − m

Page

Câu 3.

1
3
Phương trình hoành độ giao điểm − x 4 + x 2 + = 0  x =  3 . Do đó đồ thị hàm số cắt trục
2
2
hoành tại hai điểm.
Tìm tất cả giá trị thực của tham số m để đồ thị hàm số y = x 4 − 2mx 2 + 2m − 3 có ba điểm cực trị

Sản phẩm của tập thể giáo viên nhóm strong team toán vd-vdc
bản đọc để soát lỗi
Do hàm số đã cho là hàm số trùng phương nên để đồ thị hàm số y = x 4 − 2mx 2 + 2m − 3 có ba
điểm cực trị là ba đỉnh của một tam giác cân thì a.b  0  1. ( −2m )  0  m  0 .
Câu 4.

Cho khối chóp có đáy là đa giác lồi n cạnh. Trong các mệnh đề sau đây mệnh đề nào đúng:
A. Số mặt và số đỉnh bằng nhau.
B. Số đỉnh của khối chóp bằng 2n +1 .
C. Số mặt của khối chóp bằng 2n .
D. Số cạnh của khối chóp bằng n + 1.
Lời giải
Tác giả:Trần Thị Thanh Thủy
Chọn A
Khối chóp có đáy là đa giác lồi n cạnh có n + 1 đỉnh; n + 1 mặt và 2n cạnh.
Do đó khối chóp có đáy là đa giác lồi n cạnh có số mặt và số đỉnh bằng nhau.

Câu 5.

Tìm tập xác định của hàm số y

x2

A. D = ( 0;3) .

\ 0;3 .

B. D =

3x

4

.
C. D = ( −;0 )  ( 3; + ) .

D. D =

.

Lời giải
Tác giả : Nguyễn Thị Bích
Chọn B
Hàm số y = ( x 2 − 3x )

−4

x  0
xác định  x 2 − 3x  0  
x  3 .

Vậy tập xác định của hàm số : D =
Câu 6.

\ 0;3

Với các số thực a, b bất kỳ, mệnh đề nào dưới đây đúng ?
A.

5a
= 5a − b .
5b

B.

a
5a
b
=
5
.
5b

C.

5a
= 5ab .
5b

D.

5a
= 5a + b .
5b

Lời giải
Tác giả : Nguyễn Thị Bích
Chọn A
Câu 7.

Giá trị nhỏ nhất của hàm số y =
A.

2
.
3

B.0.

x −1
trên đoạn 1; 2 là:
2x +1
1
C. .
5

D. −2 .

Lời giải
Tác giả:Nguyễn Thị Thúy
Chọn B

x −1  0
Dễ thấy với mọi x  1;2 thì 
2 x + 1  0
Do đó y =

Vậy giá trị nhỏ nhất của hàm số bằng 0 khi x = 1
Cho hàm số y = f (x ) liên tục trên và có bảng xét dấu của đạo hàm như hình vẽ.

Hàm số y = f (x ) có bao nhiêu điểm cực trị?

+

2
0



4
0

+
+

2

0
x −
−1
+ 0 −
f'(x)

Page

Câu 8.

x −1
 0  x  1;2 . Dấu " = " xảy ra khi và chỉ khi x = 1
2x +1

Sản phẩm của tập thể giáo viên nhóm strong team toán vd-vdc
A. 4 .
B. 1 .
C. 2 .

bản đọc để soát lỗi
D. 3 .

Lời giải
Tác giả:Nguyễn Thị Thúy
Chọn A
Câu 9.

Hàm số có 4 điểm cực trị
Đồ thị như hình vẽ là đồ thị của hàm số nào dưới đây?

A. y

x3

3x 2

4.

B. y

x3 +3x 2

4

C. y

x3

3x 2

4.

D. y

x3

3x 2

4.

Lời giải
Tác giả: thpt tuyphong
Chọn B
Hàm số có dạng: y = a.x3 + bx 2 + cx + d
Dựa vào đồ thị, ta có hệ số a  0 .
Tâm đối xứng I (1; −2 ) →Chọn đáp án B
Câu 10. Cho đường thẳng d 2 cố định, đường thẳng d1 song song và cách d 2 một khoảng cách không đổi.
Khi d1 quay quanh d 2 ta được
A. Hình tròn

B. Khối trụ

C. Hình trụ

D. Mặt trụ

Lời giải
Tác giả: thpt tuyphong
Chọn D
Đường thẳng d1 quay quanh d 2 sẽ tạo ra một mặt trục có bán kính là R = d ( d1 , d 2 )
Câu 11. Cho a  0,a  1 và x , y là hai số thực thỏa mãn xy  0 . Mệnh đề nào dưới đây đúng?
A. loga (x + y ) = loga x + loga y .

2
B. loga x = 2loga x .

C. loga ( xy ) = loga x + loga y . D. loga ( xy ) = loga x + loga y .
Lời giải
Tác giả:Trần Văn Minh Chiến

Page

3

Chọn C
Câu 12. Tính thể tích của vật thể tròn xoay khi quay mô hình (như hình vẽ) quanh trục DF :

Sản phẩm của tập thể giáo viên nhóm strong team toán vd-vdc

A.

10 3
a .
7

B. a 3 .

C.

3

bản đọc để soát lỗi

5 3
a .
2

D.

10 3
a .
9

Lời giải
Tác giả:Trần Văn Minh Chiến
Chọn D
Quay hình vuông ABCD quanh trục DF ta được một hình trụ có bán kính bằng đường cao
3
bằng a có thể tích V1 = a .
Trong tam giác vuông AEF có EF = AF .tan 300 =

a
.
3

Quay tam giác AEF quanh trục AEF ta được một hình nón có bán kính đáy EF =

a

3

1 a2
a3
.a =
đường cao AF = a có thể tích V2 =
.
3 3
9
Vậy thể tích của vật thể tròn xoay khi quay mô hình (như hình vẽ) quanh trục DF là:

a 3 10 a 3
V1 +V2 = a +
=
9
9
3

Câu 13. Khối đa diện đều loại 5;3 có tên gọi nào dưới đây ?
A. Khối mười hai mặt đều.
C. Khối hai mươi mặt đều.

B. Khối lập phương.
D. Khối tứ diện đều.
Lời giải
Tác giả:Vũ Thị Thơm

Chọn A
Câu 14. Từ các chữ số 0 , 1 , 2 , 3 , 5 có thể lập được bao nhiêu số tự nhiên không chia hết cho 5 gồm 4
chữ số đôi một khác nhau ?
A. 120 .
B. 54 .
C. 72 .
D. 69 .
Lời giải
Tác giả:Vũ Thị Thơm
Chọn B
Số các số tự nhiên gồm 4 chữ số đôi một khác nhau lập từ các chữ số 0 , 1 , 2 , 3 ,
5 là A − A = 96 .
Gọi số tự nhiên gồm 4 chữ số đôi một khác nhau, chia hết cho 5 lập từ các chữ số
0 , 1 , 2 , 3 , 5 có dạng abcd .
TH1: d = 0  số các số tự nhiện là A43 = 24 .

4

3
4

Page

4
5

Sản phẩm của tập thể giáo viên nhóm strong team toán vd-vdc
TH2: d = 5

bản đọc để soát lỗi

a có 3 cách chọn; b có 3 cách chọn; c có 2 cách chon.

 số các số tự nhiện là 3.3.2 = 18 .
Số các số tự nhiên không chia hết cho 5 gồm 4 chữ số đôi một khác nhau, lập từ
các chữ số 0 , 1 , 2 , 3 , 5 là 96 − 24 −18 = 54 số.
6

2 

3
Câu 15: Cho khai triển  x +
 với x  0 . Tìm hệ số của số hạng chứa x trong khai triển
x

A. 80.
B. 160.
C. 240.
D. 60.
Lời giải
Tác giả : Phạm Thị Ngọc Huệ
Chọn B
Ta có :
6

k

3
6
6
6− k
2 

k 6− k  2 
k k
2
x+
 =  C6 x 
 =  C6 2 x
x  k =0

 x  k =0

Dó đó số hạng chứa x 3 trong khai triển ứng với k thỏa mãn: 6 −
Hệ số của x 3 trong khai trienr là:

3
k =3 k =2
2

C62 22 = 60

Câu 16: Mệnh đề nào trong các mệnh đề dưới đây sai ?

 2018 
A. Hàm số y = 

  

x 2 +1

đồng biến trên

( 0; + )
y = ln ( − x ) nghịch biến trên ( −;0 )

B. Hàm số y = log x đồng biến trên
C. Hàm số

D. Hàm số y = 2 đồng biến trên
x

.
Lời giải
Tác giả : Phạm Thị Ngọc Huệ

Chọn A

 2018 
Xét hàm số : y = 

  

 2018 
y' = 

  

x 2 +1

.ln

x 2 +1

2018



 2018 
Vậy hàm số y = 

  

xác định trên

.2 x Do đó

y '  0x  0
y '  0x  0

x 2 +1

nghịch biến trên

( −;0 ) và đồng biến trên ( 0; + )

Mệnh đề A sai.

Page

5

Câu 17: Cho hàm số y = f ( x ) có bảng biến thiên như sau:

Sản phẩm của tập thể giáo viên nhóm strong team toán vd-vdc

bản đọc để soát lỗi

Mệnh đề nào dưới đây đúng?
A. Hàm số nghịch biến trên ( − ;1) .
B. Hàm số nghịch biến trên ( − ;0 )  (1; +  ) .
C. Hàm số đồng biến trên ( 0;1) .
D. Hàm số đồng biến trên ( − ; 2 ) .
Lời giải
Tác giả: Bùi Nguyên Phương
Chọn C
Dựa vào bảng biến thiên, ta thấy hàm số đồng biến trên khoảng ( 0;1) , nghịch biến trên các
khoảng ( − ;0 ) và (1; +  ) .
Câu 18: Một gia đình cần xây một bể nước hình hộp chữ nhật để chứa 10 m3 nước. Biết mặt đáy có kích
thước chiều dài 2, 5 m và chiều rộng 2 m. Khi đó chiều cao của bể nước là:
A. h = 3 m.

B. h = 1 m.

C. h = 1,5 m.

D. h = 2 m.

Lời giải
Tác giả: Bùi Nguyên Phương
Chọn D
Gọi h (m) là chiều cao của bể nước hình hộp chữ nhật.
Ta có: 10 = 2,5.2.h  h = 2 m.
Câu 19: Tìm đạo hàm của hàm số y = log 2 ( 2 x + 1) .
A. y  =

2
.
2x +1

B. y  =

1
.
2x +1

C. y =

1
.
( 2 x + 1) ln 2

D. y =

2
.
( 2 x + 1) .ln 2

Lời giải
Tác giả: Võ Tự Lực
Chọn D
Ta có: y =

( 2 x + 1) =
2
.
( 2 x + 1) .ln 2 ( 2 x + 1) .ln 2

Câu 20: Cắt hình nón đỉnh S bởi mặt phẳng đi qua trục ta được một tam giác vuông cân, cạnh huyền bằng

a 2 . Thể tích khối nón là:
A.

 2
6

a3 .

B.

 2
12

a3 .

C.

 2
4

a3 .

D.

 2
12

a2 .

Chọn B

Page

Tác giả: Võ Tự Lực

6

Lời giải

Sản phẩm của tập thể giáo viên nhóm strong team toán vd-vdc

bản đọc để soát lỗi

S

A
O

B

Mặt phẳng đi qua trục của hình nón cắt hình nón theo thiết diện là tam giác vuông cân SAB có
cạnh huyền AB = a 2 .
Gọi O là tâm của đường tròn đáy, O chính là trung điểm của AB .
Bán kính đường tròn đáy R = OA =
Đường cao hình nón SO =

AB a 2
.
=
2
2

AB a 2
.
=
2
2
2

1
1 a 2 a 2  2 3
=
a .
Thể tích khối nón: V = . .R 2 .h = . . 
 .
3
3  2 
2
12
Câu 21. Cho hàm số y = sin 2 x . Mệnh đềnào sau đây đúng?



A. 2 y + y '' = 2 cos  2 x −  .
4

C. 4 y + y '' = 2 .

B. 4 y − y '' = 2 .
D. 2 y '+ y '.tanx = 0 .
Lời giải
Tác giả : Lương Văn Huy

Chọn C

 y ' = 2sin x.cosx = sin 2 x
Ta có y = sin 2 x  
 y'' = 2cos 2 x
4 y + y '' = 4sin 2 x + 2 cos 2 x = 4sin 2 x + 2 (1 − 2sin 2 x ) = 2 .

Câu 22. Cho các hàm số lũy thừa y = x , y = x  , y = x có đồ thị như hình vẽ . Mệnh đề đúng là :

C.      .

D.     

Lời giải
Tác giả : Lương Văn Huy

7

B.      .

Page

A.      .

Sản phẩm của tập thể giáo viên nhóm strong team toán vd-vdc
Chọn C

bản đọc để soát lỗi

Từ đồ thị hàm số ta có
Hàm số y = x nghịch biến trên ( 0; + ) nên   0 .
Hàm số y = x  , y = x đồng biến trên ( 0; + ) nên   0,   0 .
Đồ thị hàm số y = x  nằm phía trên đồ thị hàm số y = x khi x  1 nên   1 .
Đồ thị hàm số y = x nằm phía dưới đồ thị hàm số y = x khi x  1 nên   1 .
Vậy   0    1  
2018
Câu 23. Cho hàm số y =
. Mệnh đề nào dưới đây đúng
x −1
A. Đồ thị hàm số có tiệm cận đứng là đường thẳng x = 1 , tiệm cận ngang là đường thẳng y = 0.
B. Đồ thị hàm số có tiệm cận đứng là đường thẳng x = −1, tiệm cận ngang là đường thẳng y = 0.
C. Đồ thị hàm số có tiệm cận đứng là đường thẳng x = 1 , không có tiệm cận ngang.
D. Đồ thị hàm số có tiệm cận đứng là đường thẳng x = 1 , tiệm cận ngang là đường thẳng
y = 2018 .
Lời giải
Tác giả:Phạm Văn Huy
Chọn A
Ta có
2018
2018
= 0; lim y = lim
= 0 vậy đồ thị hàm số có đường tiệm cận ngang là
x
→−
x
→−
x −1
x −1
đường thẳng y = 0 .
lim y = lim

x →+

x →+

2018
2018
= −; lim+ y = lim+
= + vậy đồ thị hàm số có đường tiệm cận đứng là
x →1
x →1 x − 1
x →1
x →1 x − 1
đường thẳng x = 1 .
Câu 24. Cho hàm số y = f ( x) liên tục trên \ 1 có bảng biến thiên như hình vẽ. Tổng số đường tiệm
lim− y = lim−

Page

8

cận đứng và tiệm cận ngang của đồ thị hàm số y = f ( x)

Sản phẩm của tập thể giáo viên nhóm strong team toán vd-vdc
A. 1
B. 4
C. 2

bản đọc để soát lỗi
D. 3

Lời giải
Tác giả: Phạm Văn Huy
Chọn D
Từ BBT ta có

lim y = −1; lim y = 1do đó đồ thị hàm số có hai đường tiệm cận ngang là y = 1; y = −1 .

x →+

x →−

lim y = +; lim+ y = − do đó đồ thị hàm số có một đường tiệm cận đứng là x = 1 .

x →1−

x →1

Vậy tổng số có 3 đường tiệm cận.
Câu 25: Cho hàm số y = f ( x) có đạo hàm trên khoảng ( a; b ) . Xét các mệnh đề sau:
I. Nếu hàm số y = f ( x) đồng biến trên khoảng ( a; b ) thì f  ( x )  0, x  ( a; b ) .
II. Nếu hàm số y = f ( x) liên tục trên  a; b và f  ( x )  0, x  ( a; b ) thì hàm số y = f ( x) nghịch
biến trên khoảng ( a; b ) .
III. Nếu hàm số y = f ( x) liên tục trên  a; b và f  ( x )  0, x  ( a; b ) thì hàm số y = f ( x) đồng
biến trên đoạn  a; b .
Số mệnh đề đúng là:
A. 3 .

B. 0 .

C. 2 .

D. 1 .

Lời giải
Tác giả : Nguyễn Trí Chính
Chọn C
I.Sai ví dụ hàm số y = x 3 đồng biến trên ( −; + ) nhưng y '  0, x  ( −; + )
II.Đúng
III.Đúng
Câu 26: Cho hình chóp tứ giác đều có cạnh đáy bằng x . Diện tích xung quanh gấp đôi diện tích đáy. Khi
đó thể tích khối chóp bằng
A.

3 3
x .
12

B.

3 3
x.
2

C.

3 3
x.
3

D.

3 3
x.
6

Lời giải
Tác giả : Nguyễn Trí Chính
Chọn D
S

D

A
O
I
B

1
B.h , có B = x 2
3

Gọi O là tâm của hình vuông, I là trung điểm DC thì SI ⊥ CD .

Page

Thể tích khối chóp: V =

9

C

Sản phẩm của tập thể giáo viên nhóm strong team toán vd-vdc
Đặt SO = h . Có SI = SO 2 + OI 2 = h 2 +

bản đọc để soát lỗi

2

x
,
4

Có S xq = 2SI .CD , Sxq = 2B .
Suy ra: 2 x h2 +

3x 2
x2
x2
x2
x 3
= h2  h =
= 2 x 2  h2 +
= x  h2 + = x2 
4
4
2
4
4

1
x 3 x3 3
Lúc đó: V = x 2 .
.
=
3
2
6
Câu 27. Tìm tất cả các giá trị thực của tham số m sao cho hàm số y =

x −1
nghịch biến trên khoảng
x−m

(−; 2) .

A. (1; +)

B. (2; +)

C. [2; + )

D. [1; +)

Lời giải
Tác giả : Hoàng Minh Thành
Chọn C
Tập xác định : D = R \ m
Ta có : y ' =

1− m

( x − m)

2

Hàm số nghịch biến trên khoảng (−; 2) khi và chỉ khi y '  0, x  2 , tức là :

1 − m  0
m2 .

m  2
Vậy tập giá trị m cần tìm là [2; + )
Câu 28. Sau khi khai triển và rút gọn thì P( x) = (1 + x )

12

A. 27

B. 28

18

1

+  x 2 +  có tất cả bao nhiêu số hạng ?
x

C. 30
D. 25

Lời giải
Tác giả : Hoàng Minh Thành
Chọn A
12

Khai triển (1 + x)12 =  C12k x k có 13 số hạng
k =0

18

i

18
18
1

1
Khai triển  x 2 +  =  C18i ( x 2 )18−i   =  C18i x36−3i có 19 số hạng
x

 x  i =0
i =0

. Xét các hàm số g ( x ) = f ( x ) − f ( 2 x ) và

h ( x ) = f ( x ) − f ( 4 x ) . Biết rằng g  (1) = 18; g  ( 2 ) = 1000 . Tính h (1) .
A. – 2018

B. 2018

C. 2020

D. – 2020

Page

Số số hạng sau khai triển là 13 +19 − 5 = 27
Câu 29. Cho hàm số y = f ( x ) có đạo hàm trên

10

k = 3(12 − i )

Xét hệ 0  k  12 ta được ( k ; i ) = ( 0;12 ) ; ( 3;11) ; ( 6;10 ) ; ( 9;9 ) ; (12;8 ) nên có 5 số hạng của
0  i  18

hai khai triển trên đồng dạng

Sản phẩm của tập thể giáo viên nhóm strong team toán vd-vdc
Lời giải

bản đọc để soát lỗi

Chọn B
Tác giả: Lương Tuấn Đức

g ( x ) = f ( x ) − f ( 2x )  g ( x ) = f  ( x ) − 2 f  ( 2x )
18 = f  (1) − 2 f  ( 2 )
18 = g  (1) = f  (1) − 2 f  ( 2 )
 2018 = f  (1) − 4 f  ( 4 )


2000 = 2 f  ( 2 ) − 4 f  ( 4 )
1000 = g  ( 2 ) = f  ( 2 ) − 2 f  ( 4 )
Mặt khác h ( x ) = f ( x ) − f ( 4 x )  h ( x ) = f  ( x ) − 4 f  ( 4 x )  h (1) = f  (1) − 4 f  ( 4 ) = 2018
Câu 30. Cho lăng trụ đứng ABC.ABC có đáy ABC là tam giác vuông cân tại A, E là trung điểm của BC
, CB cắt BE tại M. Tính thể tích V của khối tứ diện ABCM biết AB = 3a, AA = 6a .
A. V = 7 a 3

B. V = 6 2a3

C. V = 8a 3

D. V = 6a 3

Lời giải
Chọn D
Tác giả: Lương Tuấn Đức

Kẻ MH vuông góc với BC ta có MH ⊥ ( ABC ) .
Theo định lý Talet

BM BE 1
MH MC 2
2
=
= 
=
=  MH = .6a = 4a .
MC BC 2
BB CB 3
3

1
9a 2
Tam giác ABC vuông cân tại A nên S ABC = .3a.3a =
, vậy
2
2
1
1
9a 2
VMABC = .S ABC .MH = .4a.
= 6a 3 .
3
3
2
Câu 31. Cho hình chóp S. ABCD có đáy ABCD là hình vuông cạnh a , SA vuông góc với đáy và SA

2a .

Gọi M là trung điểm của SD . Tính khoảng cách d giữa đường thẳng SB và mặt phẳng ACM
B. d

a.

C. d

2a
.
3

D. d

a
.
3

Lời giải
Tác giả: Nguyễn Thị Thu Trang

11

3a
.
2

Page

A. d

Sản phẩm của tập thể giáo viên nhóm strong team toán vd-vdc
Chọn D

bản đọc để soát lỗi

+ Gọi O là giao điểm của AC , BD
MO SB

SB

ACM

d SB, ACM

d B, ACM

d D, ACM .

+ Gọi I là trung điểm của AD
MI SA

MI

ABCD

d D, ACM

2d I , ACM

+ Trong ABCD : IK

AC (với K

+ Trong MIK : IH

MK (với H

+
AC

Ta
AC

MI , AC

IK

S

.

AC ).
MK ) 1 .

MIK

AC

M

có:
IH 2
H

.

A

Từ

1

IH

ACM

2



d I , ACM

D
I

suy

ra

K
O

IH .

C

B

+ Tính IH ?

IM .IK

- Trong tam giác vuông MIK : IH

- Mặt khác: MI

SA
2

a , IK

IM 2
OD
2

Vậy d SB, ACM

BD
4

IK 2

.

a 2
4

IH

a 2
4
a2
a2
8

a.

a
.
3

2a
.
3

Lời giải khác
Tác giả: Trần Thị Chăm
Chọn hệ trục tọa độ như hình vẽ, trong đó:

A ( 0;0;0 ) , B ( a;0;0 ) , D ( 0; a;0 ) ; C ( a; a;0 ) ; S ( 0;0; 2a )
 a 
Vì M là trung điểm của SD  M  0; ; a 
 2 
Gọi O là giao điểm của AC , BD

d SB, ACM

ACM

d B, ACM .


a2 
Ta có:  AC , AM  =  a 2 ; −a 2 ;   n ( 2; −2;1) là một
2 

VTPT của mp ( ACM )

12

SB

Page

MO SB

Sản phẩm của tập thể giáo viên nhóm strong team toán vd-vdc
Vậy phương trình mặt phẳng ( ACM ) : 2 x − 2 y + z = 0
d SB, ACM

Câu 32. Biết hàm số y
đúng?
A. a 0, b
C. a 0, b

bản đọc để soát lỗi

2a
3
c a 0 đồng biến trên khoảng 0;

d B, ACM

ax 4

bx 2

B. ab
D. ab

0.
0.

, mệnh đề nào dưới đây

0.
0.

Lời giải
Tác giả:Nguyễn Thị Thu Trang
Chọn C

2 x 2ax 2

+ Ta có: y

b.

+ Hàm số đồng biến trên khoảng 0;
2ax

2

b

0 x

0

b

0, a

a

0,

khi

0
b
2a

a

0

0, b

0.

Lời giải khác:
Tác giả: Trần Thị Chăm
Dựa vào 4 dạng đồ thị hàm số y

ax 4

bx 2

c

Như vậy, dựa vào 4 dạng đồ thị thì chỉ có trường hợp thứ 4 là hàm số
ab  0 b  0


y ax 4 bx 2 c đồng biến trên khoảng 0;
a  0
a  0
Câu 33. Cho các số thực a, b sao cho 0  a, b  1 , biết rằng đồ thị các hàm số y = a x và y = logb x cắt
nhau tại điểm M( 2018 ; 5 2019−1 ) . Mệnh đề nào dưới đây đúng?
A. a  1, b  1.

B. a  1, 0  b  1.

C. 0  a  1, b  1.

D. 0  a  1, 0  b  1.

Lời giải
Tác giả:Vũ Thị Hằng
Chọn C
Cách 1. Vì đồ thị các hàm số y = a x và y = logb x cắt nhau tại điểm M ( 2018; 5 2019-1 ) ,nên ta
có hệ
5
−1
2018
a  0,96669
a = ( 5 2019−1 ) 2018−1

 2019 = a

5


.Do đó chọn C.
2019
5
 5 −1

−1
2019
b
=
2018

1
2019
=
log
2018


= 2018
b

b

Cách 2. Đồ thị các hàm số y = a x và y = logb x cùng đi qua điểm M ( 2018; 5 2019-1 ) với
xM  1;0  yM  1 nên 0  a  1, b  1. Chọn C

13

)

Page

(

Sản phẩm của tập thể giáo viên nhóm strong team toán vd-vdc
bản đọc để soát lỗi
2x − 5
Câu 34. Cho hàm số y =
có đồ thị ( C ) và điểm M ( −1; 2 ) . Xét điểm A bất kì trên ( C ) có
x +1
xA = a, ( a  −1) . Đường thẳng MA cắt ( C ) tại điểm B ( khác A ) . Hoành độ điểm B là:
A. −1 − a.

B. 2 − a.

C. 2a + 1.

D. −2 − a.

Lời giải
Tác giả:Vũ Thị Hằng
Chọn D
TXĐ: D = (−; −1)  (−1; +) .
Ta có : lim y = 2,lim y = 2 nên đường thẳng (d1 ) : y = 2 là tiệm cận ngang của đồ thị (C ) .
x →+

x →−

lim y = −, lim y = + nên đường thẳng (d 2 ) : x = −1 là tiệm cận đứng của đồ thị (C ) .

x → ( −1)+

x → ( −1) −

Nhận xét : M (−1; 2) là giao điểm của hai đường tiệm cận . Nên M (−1; 2) là tâm đối xứng của
đồ thị (C ) do đó M là trung điểm của AB suy ra xB = 2 xM − xA = −2 − a .
Câu 35. Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a . Gọi M , N lần lượt là trung điểm của
SB và SD . Biết AM vuông góc với CN . Tính bán kính mặt cầu ngoại tiếp hình chóp S.ABCD
.
2a
3a
a
4a
.
.
.
.
A.
B.
C.
D.
10
10
10
10
Tác giả: Lê Hồ Quang Minh
Lời giải
Chọn B
z

S

d

N

H

x
M

I
A

D
O

y

B

C

Chọn hệ trục tọa độ Oxyz như hình vẽ, ta có:

Page

 a 2 x

a 2 x
M , N lần lượt là trung điểm của SB và SD nên: M  0;
;  và N  0; −
; .
4 2
4 2 



14

a 2

 a 2

 a 2 

a 2 
A 
;0;0  , C  −
;0  , D  0; −
;0  . Đặt SO = x  0
;0;0  , B  0;
2
2
2
 2







 S ( 0;0; x ) .

Sản phẩm của tập thể giáo viên nhóm strong team toán vd-vdc
 a 2 a 2 x
a 2 a 2 x
AM =  −
;
;  , CN = 
;−
; .
2
4 2
4 2 

 2
Theo giả thiết: AM ⊥ CN  AM .CN = 0  −

bản đọc để soát lỗi

a2 a2 x2
a 5
.
− + =0 x =
2 8 4
2

SO là trục đường tròn ngoại tiếp mặt đáy.
Gọi H là trung điểm SA . Qua H dựng đường trung trực d của SA , I = d  SO .
 Mặt cầu ngoại tiếp khối chóp S.ABCD có tâm I , bán kính R = SI .

5a 2 a 2
a 3
.
+
= a 3  SH =
2
2
2

SA = SO2 + OA2 =

SI SH
SA.SH
SHI đồng dạng với SOA 
=
 SI =
=
SA SO
SO

a 3
2 = 3a .
a 5
10
2

a 3.

3a
.
10
Câu 36. Cho hàm số f thỏa mãn f (cot x) = sin 2 x + cos2x, x  (0; ). Giá trị lớn nhất của hàm số

Vậy bán kính mặt cầu ngoại tiếp khối chóp S.ABCD là R =

g ( x) = f (sin 2 x). f (cos 2 x) trên

A.

6
.
125

B.

là.

1
.
20

C.

19
.
500

D.

1
.
25

Lời giải
Tác giả :HoangThiHongHanhc3ln@gmail.com
Chọn D
Đặt u = cot x, x  (0; )  u  .
f (cot x) = sin 2 x + cos2x hay f (u ) =

Đặt t = sin 2 x, x 

2u
u 2 − 1 u 2 + 2u − 1
+
=
u2 +1 u2 +1
u2 +1

 t  0;1

t 2 + 2t − 1 (1 − t ) 2 + 2(1 − t ) − 1
.
= h(t )
t2 +1
(1 − t ) 2 + 1
Cách 1: Dùng máy tính MODE 7 – nhập h(x) – start0 – and1 – step 0.1 được kết quả
5t 2 − 5t + 2
Cách 2: (Tự luận) h( x) = 1 − 2 4
t − 2t 3 + 3t 2 − 2t + 2
(2t − 1)(5t 4 − 10t 3 + 9t 2 − 4t − 6)
h '( x) = 4
2
t 4 − 2t 3 + 3t 2 − 2t + 2
g ( x) = f (t ). f (1 − t ) =

(

)

5t − 10t + 9t − 4t − 6 = 5t (t − 1) − 5t 3 + 9t (t − 1) + 5(t − 5) − 6  0, t  0;1
2

3

1
1


khi x = + k
Bảng biến thiên của h( x ) được giá trị lớn nhất h( ) =
2
25
4
2
Câu 37. Trong một trò chơi điện tử, xác suất để game thủ thắng trong một trận là 0,4 (không có hòa). Hỏi
phải chơi tối thiểu bao nhiêu trận để xác suất thắng ít nhất một trận trong loạt chơi đó lớn hơn
0,95 .

A.6.

B.7.

C.4.
Lời giải

D.5.

15

3

Page

4

Sản phẩm của tập thể giáo viên nhóm strong team toán vd-vdc

bản đọc để soát lỗi
Tác giả:Nguyễn Tuấn Đạt

Chọn A
Ai : Trận thứ i game thủ thắng .

Ai : Trận thứ i game thủ thua.
Ta có P ( Ai ) = 0, 4
Suy ra: P ( Ai ) = 0,6 .
Giả sử game thủ chơi n ván

A : Game thủ thắng ít nhất một trận.
A : Game thủ không thắng trận nào hay thua tất.
Các biến cố độc lập nên ta có
P( A) = P( A1. A2 ... An ) = P( A1 ).P( An )...P( An ) = 0, 6 n
P( A) = 1 − P( A)  0,95  P( A)  0, 05

Nên ta có bất phương trình: 0,6n  0,05  n  log 0,6 0,05  5,86  n = 6 là số trận tối thiểu.
Câu 38. Cho 3 hình cầu tiếp xúc ngoài từng nhau từng đôi một và cùng tiếp xúc với một mặt phẳng. Các
tiếp điểm của các hình cầu trên mặt phẳng lập thành tam giác có các cạnh bằng 4, 2 và 3. Tích
bán kính của ba hình cầu trên là
A.12.
B.3.
C.6.
D.9.
Lời giải
Tác giả:Nguyễn Tuấn Đạt
Chọn B

Page

16

Gọi O1 ; O2 ; O3 lần lượt là tâm của 3 mặt cầu và A, B, C lần lượt là hình chiếu của 3 tâm trên
mặt phẳng đã cho.

Sản phẩm của tập thể giáo viên nhóm strong team toán vd-vdc

bản đọc để soát lỗi

O1

O3

O2

A

C

B
Không mất tính tổng quát, gọi bán kính của 3 mặt cầu lần lượt là R1 ; R2 ; R3
Dễ thấy: O1 A ⊥ ( ) ; O2 B ⊥ ( ) ; O3C ⊥ ( ) và O1 A = R1 ; O2 B = R2 ; O3C = R3
Xét hình thang vuông O1 ABO2 vuông tại A và B. Từ O2 kẻ O2 H ⊥ AO1

O1

O2

H

A

Xét tam giác vuông O1O2 H :( O1O2 ) = O1H 2 + AB 2  ( R1 + R2 ) = ( R1 − R2 ) + AB 2
2

2

2

Page

Suy ra: AH = R2 ; O1H = R1 − R2 ; O2 H = AB; O1O2 = R1 + R2

17

B

Sản phẩm của tập thể giáo viên nhóm strong team toán vd-vdc
AB 2
 R1.R2 =
4

bản đọc để soát lỗi

BC 2
AC 2
 R1.R2 .R3 = 3
; R1.R3 =
4
4
Câu 39. Cho hàm số y = f ( x ) có đạo hàm liên tục trên
và có đồ thị hàm số y = f  ( x ) như hình vẽ.

Tương tự: R2 .R3 =

( )

Đặt g ( x ) = f x3 . Tìm số điểm cực trị của hàm số y = g ( x ) .

A. 3 .

B. 5 .

C. 4 .

D. 2 .

Lời giải
Tác giả: Trần Thị Thơm
Chọn A
Từ đồ thị hàm số y = f  ( x ) ta có bảng biến thiên của hàm số y = f ( x ) như sau:

x

−

f  ( x)

b

a
+

0



y = f ( x)

0

+

c



0

+

+
−

Với a  0, b  0, c  0, a = −b

Page

+ Khi x  0 . Ta có g  ( x ) = 3x2 f  ( x3 ) . Ta có:

18

 f ( x3 ) ; x  0

g ( x) = 
3
 f ( − x ) ; x  0
 3 
3
( x ) f  ( x ) ; x  0
g ( x) = 
( − x3 ) f  ( − x3 ) ; x  0


Sản phẩm của tập thể giáo viên nhóm strong team toán vd-vdc
x = 3 b
 x3 = b


g  ( x ) = 3x 2 f  ( x 3 ) = 0   x 3 = c   x = 3 c
x = 0
x = 0



bản đọc để soát lỗi

 x3  a
g  ( x )  0  f  ( x3 )  0   3
 x  3 c (Do x  0 )
x  c

b  x 3  c
3 b  x  3 c

3
3


g ( x )  0  f ( x )  0  a  x  0  
(Do x  0 )
3
0  x3  b
0  x  b

+ Khi x  0 . Ta có g  ( x ) = −3x 2 f  ( − x3 ) . Ta có:
x = −3 b
 − x3 = b
g  ( x ) = −3x 2 f  ( − x3 ) = 0   3

 x = − 3 c
− x = c

  3 −b  x  3 −a
  a  − x3  b
 f  ( − x3 )  0  
 3 −b  x  0

3
3
3

g ( x)  0  
  b  − x  c    −c  x  −b  
 3 −c  x  3 −b


 x  0
x  0
x  0
  − x3  a
 f  ( − x3 )  0

g ( x)  0  
   − x 3  c  x  3 −c

 x  0
x  0
Bảng biến thiên của hàm số y = g ( x )
x

g ( x )

−

3



−c

0

3

+

−b

0

3

0
+

0



0

3

b



+

c

0

+

Từ BBT suy ra hàm số y = g ( x ) có ba điểm cực trị.

Câu 40. Có bao nhiêu giá trị nguyên của tham số m để đồ thị hàm số y = x3 − 8x 2 + ( m2 + 11) x − 2m2 + 2
có hai điểm cực trị nằm về hai phía của trục Ox .
A. 4 .
B. 5 .
C. 6 .

D. 7 .

Lời giải
Tác giả: Trần Thị Thơm
Chọn B
Đồ thị hàm số y = x3 − 8x 2 + ( m2 + 11) x − 2m2 + 2 ( C ) có hai điểm cực trị nằm về hai phía của
trục Ox  ( C ) cắt trục Ox tại ba điểm phân biệt.

( C ) cắt trục Ox

tại ba điểm phân biệt

Page

x = 2
Ta có (*)  ( x − 2 ) ( x 2 − 6 x + m2 − 1) = 0   2
2
 x − 6 x + m − 1 = 0 (1)

19

 x3 − 8x 2 + ( m2 + 11) x − 2m2 + 2 = 0 (*) có ba nghiệm phân biệt.

Sản phẩm của tập thể giáo viên nhóm strong team toán vd-vdc
 Phương trình (1) có hai nghiệm phân biệt khác 2 .

bản đọc để soát lỗi

 = 10 − m2  0


− 10  m  10

 2
2
m   3


2 − 6.2 + m − 1  0
Có 5 giá trị nguyên của m thoả mãn điều kiện trên.
Câu 41. Cho khối chóp S.ABC có thể tích bằng 16cm 3 . Gọi M, N, P lần lượt là trung điểm của các cạnh
SA, SB, SC. Tính thể tích V của khối tứ diện AMNP .
A. V = 8cm 3 .

B. V = 14cm3 .

C. V = 12cm3 .

D. V = 2cm 3 .

Lời giải
Tác giả: Nguyễn Thị Mai
Chọn D
Ta có VA.MNP = VS .MNP (do M là trung điểm của SA , nên d ( A, MNP) = d ( S , MNP ) .


VS .MNP SM SN SP 1
1
=
.
.
=  VS .MNP = VS . ABC = 2 .
VS . ABC
SA SB SC 8
8

Câu 42. Cho parabol ( P ) : y =

x2 − 2x + 3
và đường thẳng d : x − y − 1 = 0 . Qua điểm M tuỳ ý trên
2

đường thẳng d kẻ hai tiếp tuyến MT1 , MT2 tới ( P ) (với T1 , T2 là các tiếp điểm). Biết rằng
đường thẳng T1T2 luôn đi qua điểm I ( a; b ) cố định. Khẳng định nào sau đây đúng ?
A. b  ( −1;3) .

B. a  b .

C. a + 2b = 5 .

D. a.b = 9 .

Lời giải
Tác giả: Nguyễn Thị Mai
Chọn A
Ta đặt T1 ( x1 ; y1 ) , T2 ( x2 ; y2 ) và M ( m; m − 1)  d .
Viết phương trình tiếp tuyến tại T1 : y = ( x1 − 1)( x − x1 ) +
Vì M thuộc tiếp tuyến nên m − 1 = ( x1 − 1)( m − x1 ) +

x12 − 2 x1 + 3
2

x12 − 2 x1 + 3
(1)
2

Viết phương trình tiếp tuyến tại T2 : y = ( x2 − 1)( x − x2 ) +
Vì M thuộc tiếp tuyến nên m − 1 = ( x2 − 1)( m − x2 ) +

x22 − 2 x2 + 3
2

x22 − 2 x2 + 3
(2)
2

 x1 + x2 = 2m

Từ ( 1) , ( 2 )   5 − x12 5 − x22  x1 .x2 = 4 m − 5 .
2−x = 2−x
1
2


Có thể nhận thấy x1 , x2 là nghiệm của phương trình

 x = m − m2 − 4 m + 5
.
X − 2mX + 4m − 5 = 0   1
 x = m + m2 − 4 m + 5
 2

Page

20

2

Sản phẩm của tập thể giáo viên nhóm strong team toán vd-vdc
bản đọc để soát lỗi
x − x1 x1 − x2
Viết phương trình (T1T2 ) :
=
 m ( x − 2 ) − x − y + 4 = 0  I ( 2; 2 ) .
y − y1 y1 − y2
Câu 43. Cho a , b là các số thực và hàm số f ( x) = a log 2019

(

)

x 2 + 1 + x + b sin x.cos ( 2018x ) + 6. Biết rằng

f ( 2018ln 2019 ) = 10 . Tính P = f ( −2019ln 2018 ) .

A. P = 4.

B. P = 2.

C. P = −2.

D. P = 10.

Lời giải
Tác giả: Phạm Chí Tuân
Chọn B
Xét hàm số g ( x ) = f ( x ) − 6 = a log 2019
Do

(

)

x 2 + 1 + x + b sin x.cos ( 2018 x )

x 2 + 1 + x  x + x  0 nên hàm số g ( x ) có tập xác định D =

Ta có: x  D  − x  D và g ( − x ) = a log 2019
 g ( − x ) = a log 2019

(

(−x)

2

.

)

+ 1 + ( − x ) + b sin ( − x ) .cos ( 2018. ( − x ) )

)

(

x 2 + 1 − x − b sin x.cos ( 2018 x )



1
 g ( − x ) = a log 2019 
 − b sin x.cos ( 2018 x )
2
 x +1 + x 
 g ( − x ) = −a log 2019

(

)

x 2 + 1 + x − b sin x.cos ( 2018 x )

 g (−x) = −g ( x) .
Vậy hàm số g ( x ) là hàm số lẻ.
Lại có: 2018ln 2019 = 2019ln 2018  g ( 2018ln 2019 ) = − g ( −2019ln 2018 )

 f ( 2018ln 2019 ) − 6 = −  f ( −2019ln 2018 ) − 6
 10 − 6 = − f ( −2019ln 2018 ) + 6
 f ( −2019ln 2018 ) = 2 .

Câu 44. Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép (tức là tiền lãi của
kỳ trước được cộng vào vốn của kỳ kế tiếp) với kì hạn 3 tháng, lãi suất 2% một quý. Sau đúng

6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước đó. Tổng số tiền
người đó nhận được sau 1 năm gửi tiền vào ngân hàng gần bằng với kết quả nào sau đây. Biết
rằng trong suốt thời gian gửi tiền lãi suất ngân hàng không thay đổi và người đó không rút tiền
ra.
A. 212 triệu đồng.

B. 216 triệu đồng.

C. 210 triệu đồng.

D. 220 triệu đồng.

Lời giải

Số tiền người đó có được sau đúng 6 tháng gửi là: T1 = 108. (1 + 2% ) = 104.040.000 (đồng).
2

Page

Chọn A

21

Tác giả: Phạm Chí Tuân

Sản phẩm của tập thể giáo viên nhóm strong team toán vd-vdc
bản đọc để soát lỗi
Số tiền người đó có được sau 1 năm khi người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất
2
như trước đó là: T2 = (104.000.000 + 100.000.000 )(1 + 2% ) = 212.283.216 (đồng).

1

Câu 45: Số các giá trị nguyên của tham số m để hàm số y = log ( mx − m + 2 ) xác định trên  ; +  là
2

A. 4.
B. 5.
C. Vô số.
D. 3.
Lời giải
Tác giả: Bùi Thị Kim Oanh
Chọn A
Điều kiện xác định của hàm số y = log ( mx − m + 2 ) là: mx − m + 2  0 (*) .
Trường hợp 1: m = 0

(*)  2  0 (luôn đúng với x   12 ; +  )








Do đó m = 0 nhận.
Trường hợp 2: m  0

(*)  x  mm− 2 .
m−2

Suy ra tập xác định của hàm số là D = 
; +  .
 m

1

m−2 1
 0m4 .
Do đó, hàm số y = log ( mx − m + 2 ) xác định trên  ; +  
m
2
2

Vì m 

nên m  1;2;3 .

Trường hợp 3: m  0

(*)  x  mm− 2 .

m−2
Suy ra tập xác định của hàm số là D =  −;
.
m 

1

Nhận thấy  ; +   D nên không có giá trị m  0 nào thỏa mãn yêu cầu.
2


Kết hợp 3 trường hợp ta được m  0;1;2;3 .
Vậy có tất cả 4 giá trị nguyên của m thỏa mãn yêu cầu đề ra.
x +1
Câu 46. Cho hàm số y =
có đồ thị ( C ) và A là điểm thuộc ( C ) . Tính giá trị nhỏ nhất của tổng các
x −1
khoảng cách từ A đến các đường tiệm cận của ( C ) .
A. 2 3 .

B. 2 .

C. 3 .

D. 2 2 .
Tác giả: Nguyễn Văn Phú

+) Ta có đồ thị ( C ) có hai đường tiệm cận, TCĐ: x = 1  x −1 = 0 và TCN: y = 1  y − 1 = 0

Page

Chọn D

22

Lời giải

Sản phẩm của tập thể giáo viên nhóm strong team toán vd-vdc
2 

+) Điểm A là điểm thuộc ( C ) nên A  x;1 +
, x  1
x −1 

+) Khi đó d = d ( A, TCĐ ) + d ( A, TCN ) = x − 1 +
Dấu " = " xảy ra khi và chỉ khi x − 1 =

(

bản đọc để soát lỗi

2
2
 2 x −1 .
=2 2
x −1
x −1

2
2
 x − 1 = 2  x = 1  2.
x −1

) (

Có hai điểm thỏa mãn A 1 + 2;1 + 2 ; A 1 − 2;1 − 2

)

+) Vậy dmin = 2 2
Câu 47. Cho hình hộp đứng ABCD.ABCD , AB = a, AD = 2a, BD = a 3 . Góc tạo bởi AB và mặt
phẳng ( ABCD ) bằng 60 0 . Tính thể tích của khối chóp D.ABCD .
A.

3 3
a .
3

C. a 3 .

B. 3a 3 .

D.

2 3 3
a .
3

Lời giải
Tác giả: Nguyễn Viết Hòa
Chọn C
Xét hình bình hành ABCD , ta có AB2 + BD2 = AD2 suy ra tam giác ABD vuông tại B , suy
ra S ABCD = AB.BD = a 2 3 .
A'

B'

D'

A

C'

60

D

A
D

B
C

B
C

Góc giữa AB và mặt phẳng ( ABCD ) bằng B ' AB nên B ' AB = 600 .
Suy ra D ' D = B ' B = AB tan 600 = a 3 .

1
1
Vậy VD '. ABCD = D ' D.S ABCD = a 3.a 2 3 = a 3 .
3
3
Câu 48. Một bảng vuông gồm 100 100 ô vuông. Chọn ngẫu nhiên một ô hình chữ nhật. Tính xác suất để
ô được chọn là hình vuông (trong kết quả lấy 4 chữ số ở phần thập phân)
A. 0, 0134 .
B. 0, 0133 .
C. 0, 0136 .
D. 0, 0132 .
Lời giải
Tác giả: Hoàng Nhàn
Chọn B

Page

Mỗi hình chữ nhật được tạo bởi 2 đường thẳng khác nhau x = a, x = b ( 0  a, b  100 ) và hai
2
2
đường thẳng khác nhau y = c , y = d ( 0  c, d  100 ) nên có C101
hình chữ nhật.
.C101

23

Giả sử bảng vuông gồm 100 100 ô vuông được xác định bởi các đường thẳng x = 0 , x = 1 ,
x = 2 , …, x = 100 và y = 0 , y = 1 , y = 2 , …, y = 100 trong hệ trục tọa độ Oxy .

Sản phẩm của tập thể giáo viên nhóm strong team toán vd-vdc
2
2
.C101
Suy ra không gian mẫu có số phần tử là n (  ) = C101
.

bản đọc để soát lỗi

Gọi A là biến cố “ô được chọn là hình vuông ”.
Xét các trường hợp sau:
+) TH1: ô được chọn có kích thước 11 : có 100.100 = 100 2 hình vuông.
+) TH2: ô được chọn có kích thước 2  2 : mỗi ô được tạo thành bởi 2 đường thẳng khác nhau
x = a, x = b ( 0  a  b  100 ) và hai đường thẳng khác nhau y = c , y = d ( 0  c  d  100 ) sao
cho b − a = d − c = 2  có 99.99 = 992 hình vuông.
Tương tự:
+) TH3: ô được chọn có kích thước 3  3 : có 98.98 = 982 hình vuông.

+) TH100: ô được chọn có kích thước 100 100 : có 1.1 = 12 hình vuông.
Suy ra không gian thuận lợi cho biến cố A có số phần tử là
n (  A ) = 1002 + 992 + 982 + ... + 12 =

Vậy xác suất cần tìm là P ( A) =

100. (100 + 1)( 2.100 + 1)

n (A )
n ()

6

=

= 338350 .

338350
67
=
 0, 0133 .
2
2
C101.C101 5050

Câu 49. Cho hai vectơ a, b thỏa mãn: a = 4; b = 3; a − b = 4 . Gọi α là góc giữa hai vectơ a, b . Chọn
phát biểu đúng.
1
C. cos  = .
3

B.  = 300.

A.  = 600.

3
D. cos  = .
8

Lời giải
Tác giả:Nguyễn Thị Thúy
Chọn D
2

2

2

Ta có a − b = 4  a − b = 16  a + b − 2ab = 16
2

2

2

2

 2ab = a + b − 16 = a + b − 16 = 42 + 32 − 16 = 9  ab =

( )

Từ đó suy ra cos a, b =

ab

=

ab

9
2

3
.
8

Câu 50. Cho hình chóp S.ABC có SA = SB = SC = a , ASB = 60o , BSC = 90o và CSA = 120o . Tính khoảng
cách d giữa hai đường thẳng AC và SB .
A. d =

a 3
.
4

B. d =

a 3
.
3

C. d =

a 22
.
11

D. d =

a 22
.
22

Lời giải
Tác giả : Lưu Thị Thêm

Page

24

Chọn C

Sản phẩm của tập thể giáo viên nhóm strong team toán vd-vdc

bản đọc để soát lỗi
S

K

B

F
C

d
E

H

A

+) Từ giả thiết có AB = a , BC = a 2 , AC = a 3 , suy ra ABC vuông tại B .
+) Gọi H là trung điểm của AC .

SA = SB = SC
+) Ta có 
 SH là trục đường tròn ngoại tiếp ABC  SH ⊥ ( ABC ) .
 HA = HB = HC
+) Kẻ đường thẳng d qua B và song song với AC .
+) Gọi ( ) là mặt phẳng chứa SB và d

 AC // ( )  d ( AC , SB ) = d ( AC , ( ) ) = d ( H , ( ) ) .
+) Kẻ HF ⊥ d , F  d và kẻ HK ⊥ SF , K  SF

 HK ⊥ ( )  d ( H , ( ) ) = HK .
+) Kẻ BE ⊥ AC , E  AC .
+)

1
1
1
1
1
3
1
3
=
+
= 2+ 2 = 2 
= 2 .
2
2
2
2
BE
BA
BC
a
2a
2a
HF
2a

+) Ta có SH =

1
a
SA = . .
2
2

1
1
1
a 22
.
=
+
 HK =
2
2
2
HK
SH
HF
11
Cách 2: Toạ độ hoá.
+)

Người giải : Nguyễn Văn Quý, FB: Quybacninh

Page

25

Chọn C

Sản phẩm của tập thể giáo viên nhóm strong team toán vd-vdc

Áp dụng định lí Cosin

bản đọc để soát lỗi

a 2 = b 2 + c 2 − 2.bc.cosA , trong BSC , ASC ta dễ dàng tính được

BC = a 2 , AC = a 3 . Suy ra ABC vuông tại B.
Gắn hệ trục

Oxyz như hình vẽ khi đó tọa độ các điểm:

a a 2 a
A ( a;0;0 ) , C 0; a 2;0 , S  ,
,  , B ( 0;0;0 ) .
2
2
2


(

)

(Trắc nghiệm)

(

) ( )
2;0 ) , BC ( 0;2 2;0 )
2 ) ,  SB; AC  BC = 4

Cho a = 2 thì A ( 2;0;0 ) , C 0;2 2;0 , S 1, 2,1 , B ( 0;0;0 ) .

(

) (
Nên  SB; AC  = ( 2 2;2; −4



SB −1; − 2; −1 , AC −2;2

2

 SB; AC  BC
4 2
2 22


=
=
Khoảng cách d ( SB, AC ) =
11
8 + 4 + 32
 SB; AC 



26

2 22
a.
11

Page

Đáp số bài toán là: