Cộng đồng chia sẻ tri thức Lib24.vn

Đề thi thử THPT Quốc gia 2018 môn Toán - Mẫn Ngọc Quang lần 1

962fee19d1252909b02e4c9cd545bf6d
Gửi bởi: Lê Mỹ 6 tháng 12 2017 lúc 6:46 | Được cập nhật: 23 tháng 2 lúc 21:12 Kiểu file: PDF | Lượt xem: 325 | Lượt Download: 0 | File size: 0 Mb

Nội dung tài liệu

Tải xuống
Link tài liệu:
Tải xuống

Các tài liệu liên quan


Có thể bạn quan tâm


Thông tin tài liệu

ĐỀ THI THỬ SỐ 1

(Đề gồm 50 câu/ 8 trang)

Câu 1:



KÌ THI THỬ THPTQG NĂM HỌC 2017 - 2018

Môn: TOÁN

Thời gian làm bài: 90 phút, không kể thời gian ph



Cho số phức z thỏa mãn điều kiện (1 i) z  1 3i 0 . Tìm phần ảo của số phức



w 1  zi  z .

A. –i



B. –1



C. 2



D. –2i



Câu 2: Cho các mệnh đề sau:

      



1) u 3i  2 j  k, v   i  3 j  k ; thì  u, v   1; 2;  7 







2) u 0;1; 2 , v 3; 0; 4  ; thì  u, v   4;  6;  3

          

  

3) u 4i  j  3k; v  j  5k; w 2i  3 j  k thì  u, v .w 80

        

  

4) u i j; v i j  k; w i thì  u, v .w 1

Hỏi có bao nhiêu mệnh đề đúng.

A. 1

B. 3

C. 3



D. 4



Câu 3: Tìm tất cả các giá trị của tham số thực m để phương trình sau có đúng 3 nghiệm thực phân biệt

2



2



9 x  2.3x 1  3m 1 0.

10

A. m .

3



B. 2  m



10

.

3



C. m2.



D. m 2.



Câu 4: Một người thả 1 lá bèo vào một cái ao, sau 12 giờ thì bèo sinh sôi phủ kín mặt ao. Hỏi sau mấy giờ

1

thì bèo phủ kín mặt ao, biết rằng sau mỗi giờ thì lượng bèo tăng gấp 10 lần lượng bèo trước đó

5

và tốc độ tăng không đổi.

A. 12  log 5 (giờ).

Câu 5:



B.



12

(giờ).

5



C. 12  log 2 (giờ).



Tập giá trị của m thỏa mãn bất phương trình



2.9 x  3.6 x

2

6x  4x



D. 12  ln 5 (giờ).



 x   là  ; a  b; c . Khi



đó a  b c bằng:

A. 3



B. 1



C. 2



D. 0



Page 1



Câu 6: Cho hàm số y  f  x xác định trên  \   1 , liên tục trên các khoảng xác định của nó và có bảng

biến thiên như hình vẽ:

x

y



1













1

0

2







y

1











1







Khẳng định nào sau đây là đúng?

A. Đồ thị hàm số có 3 tiệm cận.

B. Phương trình f  x m có 3 nghiệm thực phân biệt thì m 1; 2 .

C. Giá trị lớn nhất của hàm số là 2.

D. Hàm số đồng biến trên   ;1.

Câu 7: Cho a log 43, b log 25 2 . Hãy tính log 60 150 theo a, b.

1 2  2b  ab

A. log 60 150  

.

2 1  4b  2ab

1 1  b  2ab

C. log 60 150  

.

4 1  4b  2ab



1  b  2ab

B. log 60 150 

.

1  4b  4ab

1  b  2ab

D. log 60 150 4 

.

1  4b  4ab

2



Câu 8:



2



cos  cos   sin  sin 



Cho     . Tính giá trị P 

6

sin  cos 2  sin   cos 2



Chọn đáp án đúng .

A.P  2 



Câu 9:



A. 2



3



B. P 2  3



C. P 3  2



D. P 3 



2



Cho phương trình: cosx  sin 4x  cos3x 0 . Phương trình trên có bao nhiêu họ nghiệm x = a +

k2π ?

B. 6



C. 3



D. 5



Câu 10:Gọi S1 ; S2 ; S3 lần lượt là tập nghiệm của các bất phương trình sau: 2x  2.3x  5 x  3  0;

x



 1 

log 2  x  2    2; 

  1 . Tìm khẳng định đúng?

 5  1

A. S1  S3  S2 .



B. S2  S1  S3 .



Câu 11: Tìm GTLN và GTNN của hàm số y 



C. S1  S2  S3 .



D. S2  S3  S1.



2 sinx  cosx  3

là:

2 cosx  sinx  4



Page 2



maxy 2



B. 

2.

miny  



11



 maxy 1

A. 

 1.

 miny 



11



maxy 2



C. 

2.

miny 



11



maxy 1



D. 

1.

miny 



11



Câu 12:Cho hai số phức z1 1 i và z2 2  3i . Tính môđun của số phức z2  iz1 .

A.

Câu 13:



3.



C. 5.



B. 5.



D. 13.



y  cosx . Điều kiện xác định của hàm số là :



A. x





B. x  1



 





C. x    k2 ;  k2 

2

 2







D. x  

2



4



a

a

Câu 14:Biết I xln 2 x  1d x  ln 3 c, trong đó a, b, c là các số nguyên dương và

là phân số tối

b

b

0

giản. Tính S a  b  c.

A. S 60.



B. S 70.



C. S 72.



Câu 15:Số nghiệm của phương trình log 2  x 3  1 log

A. 1.



B. 3.



2



D. S 68.



x là:



C. 0.



D. 2.



x2

chia hình tròn có tâm là gốc tọa độ, bán kính bằng 2 2 thành hai phần có diện

2

S

tích là S1 và S2 , trong đó S1  S2 . Tìm tỉ số 1 .

S2



Câu 16:Parabol y 



A.



3  2

.

21   2



B.



3  2

.

9  2



C.



3  2

.

12 



D.



9  2

.

3  2



Câu 17:Một đội ngũ giáo viên gồm 8 thầy giáo dạy toán, 5 cô giáo d ạy vật lý và 3 cô giáo d ạy hóa

học. Sở giáo dục cần chọn ra 4 người để chấm bài thi THPT qu ốc gia, tính xác su ất trong 4

người được chọn phải có cô giáo và có đủ ba bộ môn

A.



5

9



B.



3

7



C.



4

7



D.



4

9



Câu 18:Cho điểm M   3; 2; 4 , gọi A, B ,C lần lượt là hình chiếu của M trên trục Ox, Oy, Oz. Trong các

mặt phẳng sau, tìm mặt phẳng song song với mặt phẳng  ABC .

A. 6 x  4 y  3z  12 0 .

C. 4 x  6 y  3z  12 0 .



B. 3 x  6 y  4 z  12 0 .

D. 4 x  6 y  3 z  12 0 .



Page 3



Câu 19: Giải bất phương trình:



Cnn 13

An41



1



14P3



B. n 7



A. 3 n 7



C. 3 n 6

n







Câu 20: Cho khai triển: P x   x 





n

1 



 Cnk

4 

2 x

k0



n k



 

x



D. n 6

k



 1 

nh

 4  biết ba hệ số đầu tiên lập thà

 2 x



cấp số cộng. Tìm các số hạng của khai triển nhận giá trị hữu tỷ x N *

A.



C84

4



x



B.



2

C.A và B



1

8 2



2x



D.không có đáp án nào



Câu 21:Giá trị cực đại của hàm số y  x  sin 2x trên 0;  là:

A.





6







3

.

2



B.



2

3



.

3

2



Câu 22:Tìm tập xác định của hàm số y 2017







A.  ;



C.

2  x2



2

3



.

3

2



D.





3



3

.

2







.









D.  ;



2    2;  .







B.  2; 2 .



C.   2; 2  .

2



2



2  .



2



Câu 23:Cho mặt cầu  S :  x  1   y  2    z  3 25 và mặt phẳng   : 2x  y  2 z  m0 . Các giá

trị của m để   và  S không có điểm chung là:

A. m  9 hoặc m21 .

C.  9 m21 .

Câu 24: Giới hạn lim



x  1



x 3



A.1



x



B.



5x 1

4x 3



B. m  9 hoặc m 21 .

D.  9 m 21 .

bằng



a

(phân số tối giản). Giá trị của a b là:

b



1

9



C.  1



D.



9

8



Câu 25:Tìm nguyên hàm của hàm số y  f  x cos3 x.

A.



f  x dx 



cos 4 x

C .

x



1

3

C. f  x dx  sin 3x  sin x C .

12

4



B.



1  sin 3x



 3sin x  C .

3





f  x dx  4 



cos 4 x.sin x

D. f  x dx 

C .

4

Page 4



 45 . Bán kính mặt cầu ngoại

Câu 26:Cho hình chóp tam giác đều S. ABC có đường cao SO a, SAB

tiếp hình chóp S. ABC bằng:

A.



3a

.

4



3a

.

2



B.



C.



3a

.

2



D.



3a

.

4



Câu 27:Trong không gian cho hình chữ nhật ABCD có AB 1, AD 2 . Gọi M ,N lần lượt là trung điểm

của AD và BC. Quay hình chữ nhật đó xung quanh trục MN ta được một hình trụ. Tính diện tích

toàn phần của hình trụ đó?

A. 10 .



B. 4  .



Câu 28:Cho hàm số y 



2 x 3

x2  2 x  3



A. 2 .



C. 2  .



D. 6 .



. Đồ thị hàm số có bao nhiêu tiệm cận?

C. 4 .



B. 3 .



D. 5 .



Câu 29:Một chất điểm đang cuyển động với vận tốc v0 15m/ s thì tăng vận tốc với gia tốc

at  t2  4t  m/ s 2  . Tính quãng đường chất điểm đó đi được trong khoảng thời gian 3 giây kể

từ lúc bắt đầu tăng vận tốc.

A. 68, 25m.



B. 70, 25m.



C. 69, 75m.



D. 67, 25m.



Câu 30:Cho số phức z a  bi  a, b    thỏa mãn  2  i  z  3z   1 3i . Tính giá trị biểu thức P a  b

.

A. P 5 .



B. P   2 .



C. P 3 .



D. P 1 .



Câu 31: Cho số phức z và số phức liên hợp của nó z có điểm biểu diễn là M, M’. Số phứcz.  4  3i 

và số phức liên hợp của nó có điểm biểu diễn lần l ượt là N, N’. Biết rằng 4 điểm M, N, M’, N’

tạo thành hình chữ nhật. Tìm giá trị nhỏ nhất của biểu thứcz  4i  5 .

A.



1

2



B.



2

5



C.



5

34



D.



4

13



 có đáy là tam giác ABC vuông tại A; AB 2, AC 3 . Mặt phẳng

Câu 32:Cho lăng trụ đứng ABC. A B C

 A BC hợp với  A B C góc 60 . Thể tích lăng trụ đã cho bằng bao nhiêu?

A.



9 39

.

26



B.



3 39

.

26



C.



18 39

.

13



D.



6 39

.

13



1 

Câu 33:Cho hàm số y  2 x2  3x  1 . Giá trị lớn nhất của hàm số trên  ; 2 là:

2 

A.



17

.

8



B.



9

.

4



C. 2 .



D. 3 .

Page 5



Câu 34: Cho các số thực a, b, c, d thỏa mãn0  a b c d và hàm số y f  x  . Biết hàm số y f '  x  có



y f  x 

đồ thị như hình vẽ. Gọi M và m lần lượt là giá trị lớn nhất và nh ỏ nh ất c ủa hàm s ố

trên  0; d . Khẳng định nào sau đây là khẳng định đúng?



m f   b   f a 

A. M 



m f  d   f c 

B. M 



m f   0   f c 

C. M 



m f  0   f  a 

D. M 



1

1

1

;

;

lập thành một cấp số cộng (theo thứ tự đó) thì dãy số nào sau đây lập

bc ca a b

thành một cấp số cộng ?



Câu 35: Nếu



A. b 2; a 2; c 2



B. c2; a 2; b 2



C. a 2; c 2; b 2



D. a 2; b 2; c 2



Câu 36: Cho các hàm số: f  x  sin 4x  cos 4 x, g x  sin 6x  cos 6 x .Tính biểu thức:



3f '  x   2g ' x   2

A.0



B.2



C.1



D.3

2



2



2



Câu 37:Trong không gian với hệ tọa độ Oxyz, cho mặt cầu  S :  x  2    y  1   z  3 9 . Mệnh đề

nào đúng?

A. Mặt cầu  S tiếp xúc với Oxy .

B. Mặt cầu  S không tiếp xúc với cả ba mặt Oxy , Oxz , Oyz .

C. Mặt cầu  S tiếp xúc với Oyz .

D. Mặt cầu  S tiếp xúc với Oxz .

Câu 38:Cho điểm M 3; 2;1 . Mặt phẳng  P  đi qua điểm M và cắt các trục tọa độ Ox, Oy, Oz tại

A, B ,C sao cho M là trực tâm tam giác ABC. Phương trình mặt phẳng  P  là:

A.



x y z

  0 .

3 2 1



C. 3 x  2 y  z  14 0 .

Câu 39:Hàm số y 



B. x  y  z  6 0 .

D.



x y z

  1 .

3 2 1



x2  4 x

đồng biến trên 1;  thì giá trị của m là:

x m



Page 6



 1 

; 2 \   1 . B. m  1; 2 \   1 .

A. m 

 2 



1



C. m  1;  .

2





1



D. m  1;  .

2





Câu 40:Gọi I là tâm mặt cầu đi qua 4 điểm M 1; 0; 0 , N 0;1; 0 , P 0; 0;1 , Q 1;1;1 . Tìm tọa độ tâm I .

1 11 

A.  ;  ;  .

2 22 



222 

B.  ; ;  .

333 



111 

C.  ; ;  .

222 



 1 1 1

D.   ;  ;   .

 2 2 2



Câu 41:Hàm số y  x4  2mx2  m có ba điểm cực trị và đường tròn đi qua ba điểm cực trị này có bán kính

bằng 1 thì giá trị của m là:

 1 5

.

2

 1 5

C. m1; m

.

2



 1 5

.

2

 1 5

D. m1; m

.

2



A. m1; m



B. m  1; m



Câu 42:Cho hình chóp tứ giá đều S. ABCD có cạnh đáy bằng a , cạnh bên hợp với đáy một góc 60 . Gọi

M là điểm đối xứng của C qua D , N là trung điểm SC. Mặt phẳng  BMN chia khối chóp

S. ABCD thành hai phần. Tỉ số thể tích giữa hai phần (phần lớn trên phần bé) bằng:

A.



7

.

5



B.



1

.

7



C.



7

.

3



D.



6

.

5



Câu 43:Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng  P  : 2x  y  3 z  2 0 . Viết phương trình

mặt phẳng Q song song và cách  P  một khoảng bằng

A.

B.

C.

D.



 4 x

 4 x

 4 x

 4 x



2 y  6 z  7 0 ;

2 y  6 z  7 0 ;

2 y  6 z  5 0 ;

2 y  6 z  3 0 ;



4 x 2 y 

4 x 2 y 

4 x 2 y 

4 x 2 y 



11

.

2 14



6 z  15 0 .

6 z  5 0 .

6 z  15 0 .

6 z  15 0 .



Câu 44: Cho tứ diện S.ABC trên cạnh SA và SB lấy điểm M và N sao cho thỏa t ỉ lệ



SM 1 SN

 ;

2 , mặt phẳng đi qua MN và song song với SC chia tứ diện thành hai

AM 2 NB

phần, biết tỉ số thể tích của hai phần ấy là K, vậy K là giá trị nào?

2

4

4

5

A. K 

B. K 

C. K 

D. K 

3

9

5

9

Câu 45:Thể tích khối tròn xoay do hình phẳng được giới hạn bởi các đường y  x2 và x  y2 quay quanh

trục Ox bằng bao nhiêu?

A.



3

.

10



B. 10 .



C.



10 

.

3



D. 3  .

Page 7



Câu 46: Đạo hàm của hàm số y  1  log 1 là:

x



1



A.



2 xlog10 1  log



1

x



1



1



B.



2 xln10 1  log



1

x



C.



1



2xlog10 1  log



1

x



D.



2 xln10 1  log



1

x



Câu 47:Trong không gian với hệ tọa độ Oxyz, cho Aa; 0; 0 , B 0; b; 0, C 0; 0;c với a, b, c dương.

Biết A, B ,C di động trên các tia Ox, Oy, Oz sao cho a  b  c 2 . Biết rằng khi a, b, c thay đổi

thì quỹ tích tâm hình cầu ngoại tiếp tứ diện OABC thuộc mặt phẳng  P  cố định. Tính khoảng

cách từ M  2016; 0; 0 tới mặt phẳng  P  .

A. 2017 .



B.



2014

.

3



C.



2016

.

3



D.



2015

.

3



Câu 48:Gọi z1 , z2 , z3 , z4 là bốn nghiệm phức của phương trình z4  2 z2  8 0 . Trên mặt phẳng tọa độ,

gọi A, B , C , D lần lượt là bốn điểm biểu diễn bốn nghiệm z1 , z2 , z3 , z4 đó. Tính giá trị của

P OA OB  OC  OD , trong đó O là gốc tọa độ.

A. P 4 .



B. P 2  2 .



C. P 2 2 .



D. P 4  2 2 .



Câu 49: Một hình hộp ABCD.A’B’C’D’ có thể tích bằng V. Khi đó, thể tích t ứ diện A’C’BD.

A.



2V

3



B.



2V

3



C.



V

3



D.



V

6



Câu 50:Người ta cắt một tờ giấy hình vuông có cạnh bằng 2 để gấp thành một hình chóp tứ giác đều sao

cho bốn đỉnh của hình vuông dán lại thành đỉnh của hình chóp. Tính cạnh đáy của khối chóp để thể

tích của nó lớn nhất.

A.



2

5



B.



2

5



C. 1



D.



4

5



Page 8



ĐÁP ÁN ĐỀ 1

1C

11C

21D

31A

41C



2D

12C

22C

32C

42A



3C

13C

23B

33A

43A



4A

14B

24A

34C

44C



5D

15A

25B

35D

45A



6B

16B

26C

36B

46D



7B

17B

27B

37A

47D



8B

18D

28C

38C

48D



9B

19D

29C

39D

49C



10D

20C

30C

40C

50B



LỜI GIẢI CHI TIẾT

Câu 1: Đáp án C

Giả sử z  x  yi( x, y  )  z

 x  yi.

 x 2

Theo giả thiết, ta có (1 i )( x  yi)  1 3i 0 0 ( x y  1)  ( x  y  3)i 0  

 y  1

Suy ra z 2  i z 2  i

Ta có w 1 (2  i )i  2  i 3  i 2  2i  i 2  i . Vậy chọn phần ảo là  1

Câu 2: Đáp án D







1) u 3; 2; 1, v   1;  3;1    u,v 







Lời giải:

 2 1 1 1 3 2 



;

;

  1;  2;  7 

  3 1 1  1  1  3  







   1 2 2 0 0 1

2)  u ,v  

;

;

   4;  6;  3 





 0 4 4 3 3 0









  

3) Ta có u  4;1;  3 , v 0;1;5 , w 2;  3;1   u; v 8;  20; 4   u ,v  .w 80













  

4) Ta có u 1;1; 0 ,v 1;1;1, w 1; 0; 0   u; v 1; 1;0    u; v .w 1

Câu 3: Đáp án C

2



Đặt t 3x , t 1  pt  t 2 6t  3m 1  0(*). Đặt f (t) t 2  6t  3m 1

2



 3x a

 x 2 log3a

Giả sử phương trình f(t) có 2 nghiệm là a và b thì  2

 2

 x log3b

 3x b

log a 0

a 0

Vậy ta có nhận xét rằng để (*) có 3 nghiệm thì  3



b  1

log3b  0

Khi đó f (1)1 6  3m 1  0 m



2 .



 t 1

Với m=2  f (t) t 2  6t  5 0  

(t / m)

 t 5  0

Page 9



Câu 4: Đáp án A

Gọi t là thời gian bèo phủ kín



1

1012

1012

mặt ao, khi đó 10 t 

t log

12  log 5

5

5

5



Câu 5: Đáp án D

Hướng dẫn:

2.9 x  3.6 x

2.9 x  5.6 x  2.4 x

2 

0

x

x

6 4

6x  4x



Điều kiện: x 0. Ta có:



Chia cả tử và mẫu của vếtrái cho 4 x  0 , bất phương trình tương đương với

2x



x



 3

 3

2.    5    2

x

 3

 2

 2



0

.

Đ

ặ

t

t



  , t  0 bất phương trình trở thành

x

 2

 3

  1

 2

 1

t

2t2  5t  2

0  

2



t 1

 1  t 2

x



1

1

1

 3

Với t  ta có     x log 3  x  log 3 2

2

2

2

2

 

2

2

x



 3

Với 1  t 2 ta có 1    2  0 x log 32

 2

2

























Vậy tập nghiệm của bất phương trình đã cho là S   ;  log 3 2    0;log 3 2





2



2







Câu 6: Đáp án B

Dựa vào bảng biến thiên, ta có các nhận xét sau:





Hàm số đã cho đồng biến trên khoảng ( ; 1) và ( 1;1)







Ta thấy rằng lim y 1 và lim y   đồ thị hàm số có hai đường tiệm cận







Phương trình f(x) = m có ba nghiệm phân biệt khi và chỉ khi 1 < m < 2







Hàm số không có GTLN trên tập xác định



x 



x  1



Câu 7: Đáp án B

Ta có b log 25 2 log52 2  2b log52  4b log54  log 45 



1

4b



Khi đó



Page 10



1

1

1

a 

 log 43  2.log 45

1

1 log (2.3.5 )

1

1

2b  1  b  2ab

log 60 150  .log 60 150  . 4

 .2

 .2

2

2 log 4(4.3.5)

2 1  log 43  log 45

2 1 a  1

1  4b  4ab

4b

Câu 8: Đáp án B

2







2  2 cos    2  2 cos 6

P





2  3.

2  2sin cos   sin cos 2  2 sin    2  2 sin 

6

2  2coscos  sin sin 



Câu 9: Đáp án B

cosx  sin 4

x  cos3x 0  2sin 2

x .sin

x  2sin 2

x .cos2

x 0

2

x ( 2 sin

x  sinx  1)0

 2 sin x2 (s inxos2

 c x) 0  sin 2





k

 x 2





 sin 2

x 0  x    k2 

2

  s inx1  





 

 k2 

 s inx  1  x 

6





2

 x  7   k2 



6



Nghiệm thứ nhất có 4 họ nghiệm , nhưng có 1 nghiệm trùng v ới nghi ệm th ứ 2 , nh ư v ậy

có tất cả 6 họ nghiệm thỏa mãn đề bài

Câu 10: Đáp án D

Dựa vào giả thiết, ta có

x







x



x



 2

 3

1

Bất phương trình     2    3    5  0 .

 5

 5

 5

x



x



x



 2

 3

 1

Đặt f (x)    2    3    5

 5

 5

 5

x



x



x



2

3 1

1

 2

 3

 f '(x)   ln  2   ln  3   ln  5  0  f (x) nghịch biến trên tập xác định.

5

5  5

5

 5

 5

Mặt khác f (1)0  f (x)  0 x 1  S1 (





x  2  0



Bất phương trình  

1





x

2



4







Bất phương trình x



;1)



x   2

7







7  S2   2;  

4



 x   4



0  S3 ( ; 0)



Suy ra S2  S3  S1

Page 11



Câu 11: Đáp án C

‐ TXĐ: 2 cosx  sinx  4 0  

x .

‐ Khi đó: y 2 cosx  sinx  4  2 sinx  cosx  3   2 y 1 cosx   y 2  sinx 3  4 y (*)

2

2

2

2

y 2.

‐ Để (*) có nghiệm thì: 3  4 y 2 y  1     y  2  

11



maxy 2



 Từ đây suy ra: 

2.

miny 



11

Câu 12: Đáp án C

Ta có z 2  iz1 2  3i  i i 2 1  2i  z 2  iz1  12  22  5

Câu 13: Đáp án C

 





 k2 ;  k2 

Điều kiện: cosx0  x 

2

 2





Tập giá trị: Ta có 0 cosx 1  0 y 1 .



Câu 14: Đáp án B

 u ln(2x  1)

Đặt 



dv xdx



2



4

du  2x  1 dx

 x2



 I  ln(2x  1) 



2

 2

0

v  x



2

4



4



x2

dx



2x  1

0

4



4



4

 x2



 x2



 x2 1



x 1



1

1

I  ln(2x  1)    

dx



ln(2x



1)



  x  ln(2x  1)







8

 2

 0 0  2 4 4(2x  1) 

 2

0  4 4

0



I



a 63

63



ln 3 3  b 4  S a  b  c 70

4

c 3





Cách 2: PP chọn hằng số

2



du  2x  1 dx

4

 4x 2  1



 u ln(2x  1) 

Đặt 

 

 I 

ln(2x  1) 

1

2

8

x



dv xdx



0



4  (2x  1)(2x  1)

v 

2

8





4



2x  1

dx

4

0







Page 12



4



63

(x 2  x)

63

 I

ln 9 

 ln 3 3 

8

4

4

0



a 63



 b 4  S a  b  c 70

c 3





Câu 15: Đáp án A

Phương trình

 x  3  0, x  0



log 2(x  3)  log 2x



2



x  0



 



x 3

log



1

1

2



x2



x  0





x 3



2

 x 2



x  0



 x   1

 x



3

 x 

 

2



3

2



Vậy phương trình đã cho có nghiệm duy nhất.

Câu 16: Đáp án B

 x 2  y 2 8

 x  2



2

Ta có 





x

 y 2

y 



2

Ta có parabol và đường tròn như hình vẽ bên

2



x2 

4

Khi đó S1   8  x 2 

 dx 2  . (Bấm máy tính)

2 

3

2



2

4

S

Suy ra S2 8  S1 6  . Suy ra 1 

3

S2 6 



4

3  3 2

4 9  2



3





Câu 17: Đáp án B

4

Ta có: chọn ra 4 thầy cô từ 16 thầy cô có C16

1820 (cách chọn)



+ Để chọn được 4 giáo viên phải có cô giáo và đủ ba bộ môn, v ậy có các tr ường h ợp sau:

* Trường hợp 1: chọn 2 thầy toán, 1 cô lý, 1 cô hóa có C82C15C 13 (cách chọn)

* Trường hợp 2: chọn 1 thầy toán, 2 cô lý, 1 cô hóa có C18C 52C 13 (cách chọn)

* Trường hợp 3: chọn 1 thầy toán, 1 cô lý, 2 cô hóa có C18C15C 32 (cách chọn)

Vậy xác suất để chọn được 4 người phải có cô giáo và có đ ủ ba b ộ môn là

C 2C 1C 1  C1C2C 1  C81C51C32 3

P 8 5 3 8 5 3



4

7

C16



Câu 18: Đáp án D

A, B, C là hình chiếu của M trên trục Ox, Oy, Oz  A(  3; 0; 0), B(0; 2; 0), C(0; 0; 4).

Page 13







 



Ta có AB (3; 2; 0) và AC (3; 0; 4)suy ra  AB;AC  (8;  12;  6)  n (ABC) (4;  6;  3)

Phương trình mặt phẳng (ABC) là 4x  6y  3z  12 0

Hoặc phương trình mặt phẳng (ABC) theo đoạn chắn, ta được (ABC):



x y z

  1

3 2 4



Vậy mặt phẳng có phương trình 4x  6y  3z  12 0 song song với mặt phẳng (ABC)

Câu 19: Đáp án D

Điều kiện: n 3

Cnn 31

A 4n1





1



14P3



(n  1)!(n 3)!

1

1

1





  (n

 1)n42 n 6

(n  3)!2!(n 1)! 14.3! (n  1)n 42



Câu 20: Đáp án C

Ba hệ số đầu tiên của khai triển

cộng nên: 1



nn  1

8



C

là0n



1 n

1;C1n . 

2



n

2.  n2  9n 8 0 

2



2



và



2

nn  1

1

lập thành cấp số

 

8

 2





C2n 



 n 8

 n 1, l 





( n = 1 thì khai triển chỉ có 2 số hạng)

8 k



Ck x 2

Các số hạng của khai triển đều có dạng: 8 .

k

2k

x4



Số hạng nhận giá trị hữu tỷ x N * ứng với 



 8 k2

 k

 k4



 0; 4;8





Vậy khai triển có 3 số hạng luôn nhận giá trị hữu tỷx N * là 1;



C84

4



2



x và



1

8 2



2x



Câu 21: Đáp án D

Ta có: y ' (x  sin 2x) ' 1 2 cos 2x y ' 0 1 2 cos 2x 0  cos 2x  



x



1

2







x





3

 k (k   ), x  (0; ) 

.

3

 x  2



3



Page 14



 y ''     2 3  0(CD)

  3 

Mặt khác y ''   4 sin 2x  

 y '' 2   2 3  0(CT)

  3 



3

 Giá trị cực đại của hàm số bằng y    

3 2

 

 3

Câu 22: Đáp án C

Hàm số xác định khi và chỉ khi 2  x 2 0 



2 x  2  D [



2; 2 ]



Câu 23: Đáp án B

Xét (S) : (x 1)2  (y  2)2  (z  3)2 25  I( 1; 2;3) và bán kính R = 5

Để (S) và (α) không có điểm chung khi

d(I; (P))  R 



 1.2  2  2.3  m

22  12  ( 2) 2



 5  m 6



 m  21

 15  

m  9



Câu 24: Đáp án A

Ta có: lim



x 3



x  1

x



5x 1

4x 3



 lim



x 3



x 

x  1



xx  4x 3



9

 lim

 .

5x 1x  3 x

  1

x  1x  1 5x 1 8

4x 3 x  3 .x



x 3



Suy ra a = 9, b = 8  a  b = 1.



Câu 25: Đáp án B

Ta có f (x)dx cos3 xdx 



1

1  sin 3x



 3sin x   C

(cos 3x  3cos x)dx  



4

4 3





Câu 26: Đáp án C

 45o   SAB vuông cân tại S

Tam giác SAB cân tại S có SAB

Suy ra SA  SB mà SAB  SBC  SAC  SA,SB,SC đôi một vuông góc với nhau

Khi đó



1

1

1

1

 2  2  2 mà SA SB SC x  x

2

SO

SA SB SC



Bán kính mặt cầu ngoại tiếp hình chóp S.ABC là R 



a 3



SA 2  SB2  SC 2 x 3 3a





2

2

2



Câu 27: Đáp án B

Gọi M, N lần lượt là trung điểm của AD, BC

Page 15



Khi quay hình chữ nhật xung quanh trục MN ta được hình trụ





Bán kính đường tròn đáy là r AM 







Chiều cao của hình trụ là h AB 1



AD

1

2



Diện tích toàn phần của hình trụ là Stp 2r(r  h) 4

Câu 28: Đáp án C

x 3

Hàm số xác định khi và chỉ khi x 2  2x  3  0  

x  1

3



x 2  

 lim   2

2x  3

x

x 



Ta có lim y  lim

 lim

 

2

x 

x 

x 

2

2 3

 lim

x  2x  3

x 

x 1  2

x x

 đồ thị hàm số có hai TCĐ. Vậy đồ thị hàm số đã cho có bốn đường tiệm cận.

Câu 29: Đáp án C

Ta có v(t) a(t)dt (t 2  4t)dt 



t3

 2t 2  C(m / s)

3



Do khi bắt đầu tăng tốc v o 15 nên v ( t 0) 15  C 15  v(t) 

Khi



đó

3



quãng



đường



3



t3

 2t 2  15

3



đi



được



bằng



3









t3

t4 2 

S v(t)dt  15   2t 2  dt  15t   t 3  69, 75m

3

12 3  0





0

0

Câu 30: Đáp án C

Đặt z a  bi(a, b   )  z a  bi mà (2  i)z  3z   1 3i

Suy ra (2  i)(a  bi)  3(a  bi)   1 3i  2a  2bi  ai  b  3a  3bi  1  3i 0

1  a  b 0

1 a  b  (a  5b  3)i 0  



a  5b  3 0



a 2

  a b 3.



b   1



Câu 31: Đáp án A

Giả sử x a  bi a, b   . Ta có: M a ;b  và M 'a ;  b

* Khi đó: z4  3i  4a  3b  3aq 4bi .

Suy ra N  4a  3b; 3 a  4b và N '  4a  3b;  3a  3b



Page 16



* Do 4 điểm M, N, M’, N’ tạo thành hình thang cân nhận Ox làm trục đối xứng nên 4 điểm



a

đó lập thành hình chữ nhật  MM ' NN '  4b 4 3 a  4b  

a



* Với a  b

 , ta có:

2



2



b

8 .

 b

3



2



9 1

1



z  4i  5  b  5   b  4   2  b    

2 2

2



9

9

Dấu bằng xảy ra khi a  , b   .

2

2

8

* Với a   , ta có:

3

2



2



2



73 2 104

289

1

2

8





z  4i  5   b  5   b  4  

b 

b  41 

9

3

73

2

3



Vậy min z  4i  5 



1

2



Câu 32: Đáp án C

Từ A kẻ AH vuông góc với BC (H  BC)

Ta có AA '  (ABC)  AA '  BC  BC  (AA 'H)





' H, AH)A

'HA

Khi đó (A

' BC); (A ' B ' C')(A

' BC); (ABC)(A

AA '

AB.AC

6



Suy ra tanA'HA=

AA ' tan 60o .AH mà AH 



2

2

AH

13

AB  AC

 AA ' 



6 39

6 39 1

18 39

 VABC.A 'B'C' AA '.SABC 

. .2.3 

13

13 2

13



Câu 33: Đáp án A

1 

Xét hàm số f (x) 2x 2  3x  1 trên  ; 2 . Ta có f '(x) 4x  3 0 x

2 



3

4



1

 3   17

  17



 17 

; f (1)  2 f (x)  

;  2   f (x)   2; 

Lại có f     2; f   

8

 2

 4

 8



 8

17

Do đó max y 

1





8

 ;2 

2 



Câu 34: Đáp án C

‐ Dựa vào đồ thị hàm số  bảng biến thiên



Page 17



 M  f 0 , f  b , f d 

 

 m  f a , f c 

‐ Mặt khác, dựa vào đồ thị hàm số, ta thấy rằng





b



c



a



b



b

c

f '  x dx    f '  x  dx  f x  a  f  x  b  f a   f c 

a









b



  f '  x  dx  f ' x dx

0



a



c



d



  f '  x  dx  f '  x dx

b



 f 0   f a   f  b   f a   f 0   f  b 

 f  b   f c   f  d   f  c   f  b   f  d 



c



f a   f c   m f c 

 M

m f   0   f c 

Vậy 

f 0   f  b   f a   M f 0 

Câu 35: Đáp án D

2

1

1

c  a (b  c)(b a)









 (a

 c)2  2b(c a) 2(b2  ab ac ab)

c a b c a b

2

2b a  c

a2  c2  2ac 2bc 2ba2(b2  ab ac ab) a2 c2 2b2



Câu 36: Đáp án B

2



Ta có f  x sin 4 x  cos 4 x sin 2 x  cos 2 x  2 sin2 xcos 2 x

1 



1 2

1

3 1

sin 2 x 1  1  cos 4x   cos 4x  f '  x   sin 4x

2

4

4 4

3



Ta có g x  sin 6 x  cos6 x sin 2 x  cos 2 x  3sin 2 xcos 2 xsin 2 x  cos 2 x

1 



3 2

3

5 3

3

sin 2 x 1  1  cos 4x   cos 4x  g '  x   sin 4x

4

8

8 8

2



 3



Do đó 3 f '  x  2 g '  x  2 3.  sin 4x  2   sin 4x  2 2. Chọn B.

 2



Câu 37: Đáp án A

Xét mặt cầu (S) : (x 2) 2  (y  1)2  (z  3)2 9  tâm I(2;  1; 3) và R = 3

Mặt phẳng (Oxy), (Oyz), (Oxz) có phương trình lần lượt là z 0; x 0; y 0 .

Có d(I; (Oxy)) 3, d(I; (Oyz))2, d(I; (Oxz))1 nên mặt cầu (S) tiếp xúc với (Oxy)

Câu 38: Đáp án C

Mặt phẳng (P) cắt các trục tọa độ tại các điểm A(a; 0; 0), B(0; b; 0), C(0; 0; c)

Page 18