Cộng đồng chia sẻ tri thức Lib24.vn

Đề KSCL tốt nghiệp THPT 2020 lần 1 Toán 12 trường THPT Tô Hiến Thành – Thanh Hóa

Gửi bởi: Phạm Thọ Thái Dương 2 tháng 6 2020 lúc 11:11 | Được cập nhật: 20 tháng 2 lúc 8:06 Kiểu file: PDF | Lượt xem: 337 | Lượt Download: 2 | File size: 0.560041 Mb

Nội dung tài liệu

Tải xuống
Link tài liệu:
Tải xuống

Các tài liệu liên quan


Có thể bạn quan tâm


Thông tin tài liệu

SỞ GD&ĐT THANH HÓA TRƯỜNG THPT TÔ HIẾN THÀNH (Đề thi có 6 trang) ĐỀ THI KSCL TỐT NGHIỆP THPT LẦN 1 NĂM HỌC 2019 - 2020 MÔN TOÁN 12 Thời gian làm bài: 90 phút (không kể thời gian giao đề) Mã đề thi 121 Họ, tên thí sinh: ...................................................................... Số báo danh: .................................. Câu 1: Có bao nhiêu số có bốn chữ số khác nhau được tạo thành từ các chữ số 1, 2,3, 4,5 ? A. A54 . B. P5 . C. C54 . D. P4 . Câu 2: Cho cấp số cộng ( un ) có u1 = −2 và công sai d = 3 . Tìm số hạng u10 . A. u10 = −2.39 . B. u10 = 25 . Câu 3: Số nghiệm của phương trình 2 x A. 0 . 2 −x C. u10 = 28 . D. u10 = −29 . C. 1 . D. 2 . C. 12 . D. 9 . C. [5; +∞ ) . D. ( 5; +∞ ) . = 1 là B. 3 . Câu 4: Tìm số mặt của hình đa diện ở hình vẽ bên: A. 11 . B. 10 . y Câu 5: Tập xác định của hàm số = A. ( −∞ ;5 ) . ( x − 5) 3 là B.  \ {5} . Câu 6: Cho f ( x ) , g ( x ) là các hàm số xác định và liên tục trên  . Trong các mệnh đề sau, mệnh đề nào sai? A. ∫ f ( x ) g ( x ) dx = ∫ f ( x ) dx.∫ g ( x ) dx . B. ∫ 2 f ( x ) dx = 2 ∫ f ( x ) dx . C. ∫  f ( x ) + g ( x ) dx =∫ f ( x ) dx + ∫ g ( x ) dx . D. ∫  f ( x ) − g ( x ) dx = ∫ f ( x ) dx − ∫ g ( x ) dx . Câu 7: Thể tích của khối chóp có chiều cao bằng h và diện tích đáy bằng B là 1 A. V = Bh . 3 B. V = 1 Bh . 6 C. V = Bh . D. V = 1 Bh . 2 Câu 8: Cho khối nón có chiều cao h = 3 và bán kính đáy r = 5 . Thể tích khối nón đã cho bằng: A. 8π . B. 15π . C. 9π . D. 25π . Trang 1/6 Câu 9: Cho mặt cầu có diện tích bằng 72π ( cm 2 ) . Bán kính R của khối cầu bằng: A. R = 6 ( cm ) . C. R = 3 ( cm ) . B. R = 6 ( cm ) . D. R = 3 2 ( cm ) . Câu 10: Cho hàm số y = f ( x ) có bảng biến thiên như sau x y′ −∞ −2 0 3 + 0 0 − 2 0 3 + − +∞ y −1 −∞ −∞ Hàm số y = f ( x ) nghịch biến trên khoảng nào dưới đây? A. ( −2;0 ) . B. ( −∞; − 2 ) . C. ( 0; 2 ) . D. ( 0; + ∞ ) . Câu 11: Với các số thực a, b, c > 0 và a, b ≠ 1 bất kì. Mệnh đề nào dưới đây sai? A. log a = ( b.c ) log a b + log a c . B. log ac b = c log a b . C. log a b.log b c = log a c . D. log a b = 1 . log b a Câu 12: Gọi l , h , r lần lượt là độ dài đường sinh, chiều cao và bán kính mặt đáy của hình nón. Diện tích xung quanh S xq của hình nón là 1 D. S xq = π r 2 h . 3 C. S xq = π rl . B. S xq = 2π rl . A. S xq = π rh . Câu 13: Cho hàm số y = f ( x ) có bảng biến thiên như hình vẽ dưới đây. Khẳng định nào sau đây là đúng? x + y′ y 2 −∞ +∞ 4 0 − 0 + 3 +∞ -2 −∞ A. Hàm số đạt cực đại tại x = 4 . B. Hàm số đạt cực tiểu tại x = −2 . C. Hàm số đạt cực tiểu tại x = 3 . D. Hàm số đạt cực đại tại x = 2 . Câu 14: Đường cong trong hình sau là đồ thị của một hàm số trong bốn hàm số được liệt kê ở bốn phương án A, B, C, D dưới đây. Hỏi hàm số đó là hàm số nào? y −1 O 1 x −1 A. y = − x 4 + 2 x 2 − 1. B. y = − x 4 + x 2 − 1. C. y = − x 4 + 3 x 2 − 3. D. y = − x 4 + 3 x 2 − 2. Trang 2/6 Câu 15: Đồ thị hàm số y = 2x − 3 có các đường tiệm cận đứng và tiệm cận ngang lần lượt là x −1 A. x = 2 và y = 1 . B. x = 1 và y = −3 . C. x = −1 và y = 2 . D. x = 1 và y = 2 . C. 0 < x < 10 . D. x ≥ 10 . Câu 16: Giải bất phương trình log 3 ( x − 1) > 2 A. x > 10 . B. x < 10 . Câu 17: Cho hàm số y = f ( x ) có đồ thị trong hình dưới đây. Số nghiệm của phương trình f ( x ) = 1 là 2 y 1 −1 1 O x −1 A. 1 . Câu 18: Cho I = B. 2 . C. 3 . 2 2 0 0 D. 4 . f ( x ) dx 3 . Khi đó J = ∫ 4 f ( x ) dx bằng: ∫= A. 7 . B. 12 . C. 8 . D. 4 . C. z= 2 + i . D. z = 1 − 2i . z2 . z1 1 7 C. z= − i. 5 5 1 7 D. z = − + i. 10 10 Câu 19: Cho số phức z = 1 + 2i . Số phức liên hợp của z là A. z =−1 + 2i . B. z =−1 − 2i . Câu 20: Cho hai số phức z1 = 1 + 2i , z2 = 3 − i . Tìm số phức z = A. z= 1 7 + i. 5 5 B. = z 1 7 + i. 10 10 Câu 21: Gọi A , B lần lượt là các điểm biểu diễn của các số phức z1 = 1 + 2i ; z2 = 5 − i . Tính độ dài AB. A. 5 + 26 . B. 5 . C. 25 . D. 37 . Câu 22: Trong mặt phẳng tọa độ Oxyz , cho ba điểm M ( 2;0;0 ) , N ( 0; − 1;0 ) và P ( 0;0; 2 ) . Mặt phẳng ( MNP ) A. có phương trình là x y z 0. + + = 2 −1 2 B. x y z + + = −1 . 2 −1 2 C. x y z + + = 1. 2 1 2 D. x y z + + = 1. 2 −1 2 Câu 23: Trong không gian với hệ tọa độ Oxyz , cho mặt cầu có phương trình ( x − 1) + ( y + 3) + z 2 = 9. 2 2 Tìm tọa độ tâm I và bán kính R của mặt cầu đó. A. I ( −1;3;0 ) ; R = 3 . B. I (1; −3;0 ) ; R = 9 . C. I (1; −3;0 ) ; R = 3 . D. I ( −1;3;0 ) ; R = 9 . Trang 3/6 x − 2 y −1 z Câu 24: Trong không gian Oxyz , cho đường thẳng d : = = . Đường thẳng d có một vec tơ 2 1 −1 chỉ phương là  A. u1 =   ( −1; 2;1) . B. u2 = ( 2;1;0 ) .  C. u3 = ( 2;1;1) . D. u4 = ( −1; 2;0 ) . x −1 y + 2 z − 3 Câu 25: Trong không gian Oxyz , đường thẳng d : = = đi qua điểm 3 −4 −5 B. (1; −2;3) . C. ( −3; 4;5 ) . D. ( 3; −4; −5 ) . A. ( −1; 2; −3) . Câu 26: Cho hình chóp S . ABCD có đáy là hình vuông cạnh a . SA = a 2 và SA vuông góc mặt phẳng đáy. Góc giữa cạnh bên SC với đáy bằng A. 60° . B. 30° . C. 45° . D. 90° . Câu 27: Cho hàm số f ( x ) có đạo hàm f ′ ( x ) =+ ( x 1) ( x − 2 ) ( 2 x + 3) . Số điểm cực trị của f ( x ) là 2 A. 3 . 3 C. 0 . B. 2 . D. 1 . Câu 28: Giá trị lớn nhất của hàm số y = − x 4 + 2 x 2 + 2 trên [ 0;3] là B. −61 . A. 2 . C. 3 . Câu 29: Cho a > 0 , b > 0 và a khác 1 thỏa mãn log a b = A. 16 . B. 12 . D. 61 . 16 b ; log 2 a = . Tính tổng a + b . 4 b C. 10 . D. 18 . Câu 30: Cho hàm số y = x 3 + x + 2 có đồ thị ( C ) . Số giao điểm của ( C ) và đường thẳng y = 2 là A. 1. B. 0. C. 3. D. 2. Câu 31: Tập nghiệm của bất phương trình 16 x + 2.4 x − 3 > 0 là A. [ 0; +∞ ) . B. [1; +∞ ) . C. (1; +∞ ) . D. ( 0; +∞ ) . = 30° và AB = a . Quay tam giác AOB quanh trục Câu 32: Cho tam giác AOB vuông tại O , có OAB AO ta được một hình nón. Tính diện tích xung quanh S xq của hình nón đó. A. S xq = Câu 33: Cho I = π a2 . 2 4 ∫x B. S xq = π a 2 . u 1 + 2 x dx và= C. S xq = π a2 . 4 D. S xq = 2π a 2 . 2 x + 1 . Mệnh đề nào dưới đây sai? 0 3 1 2 2 A. I = x x − 1 dx . 2 ∫1 ( ) 3 1  u5 u3  C. I =  −  . 2  5 3 1 B. I = 3 ∫ u (u 2 2 ) − 1 du . 1 3 1 2 2 D. I = u u − 1 du . 2 ∫1 ( ) Câu 34: Diện tích S của hình phẳng giới hạn bởi đồ thị các hàm số y = x và y = e x , trục tung và đường thẳng x = 1 được tính theo công thức: Trang 4/6 A.= S 1 ∫ e x − 1 dx . B.= S 0 1 x ∫ ( e − x ) dx . C.= S 0 1 x ∫ ( x − e ) dx . D.= S 1 ∫e x − x dx . −1 0 3 i. Câu 35: Tìm phần ảo của số phức z , biết (1 + i ) z =− A. 2 . B. −2 . C. 1 . D. −1 . Câu 36: Cho z1 , z2 là hai nghiệm phức của phương trình z 2 + 2 z + 5 = 0 , trong đó z1 có phần ảo dương. Số phức liên hợp của số phức z1 + 2 z2 là? A. −3 + 2i . B. 3 − 2i . C. 2 + i . D. 2 − i .  x  2  2t  Câu 37: Trong không gian Oxyz , cho đường thẳng d :  y  1  t . Mặt phẳng đi qua A ( 2; −1;1) và   z  4  t vuông góc với đường thẳng d có phương trình là A. 2 x + y − z − 2 = 0. B. x + 3 y − 2 z − 3 = 0 . C. x − 3 y − 2 z + 3 = 0. 0 . D. x + 3 y − 2 z − 5 = Câu 38: Trong không gian với hệ trục tọa độ Oxyz , cho điểm A ( 3; − 1;1) . Gọi A′ là hình chiếu của A lên trục Oy . Tính độ dài đoạn OA′ . A. OA′ = −1 . B. OA′ = 10 . C. OA′ = 11 . D. OA′ = 1 . Câu 39: Có bao nhiêu số tự nhiên có 30 chữ số, sao cho trong mỗi số chỉ có mặt hai chữ số 0 và 1 , đồng thời số chữ số 1 có mặt trong số tự nhiên đó luôn là một số lẻ? A. 227 . B. 229 . C. 228 . D. 3.227 . Câu 40: Cho hình chóp S . ABC có đáy ABC là tam giác vuông tại = B, AB 3= a, BC 4a. Cạnh bên SA vuông góc với đáy. Góc tạo bởi giữa SC và đáy bằng 60° . Gọi M là trung điểm của AC , tính khoảng cách giữa hai đường thẳng AB và SM . 5a 10a 3 A. a 3 . B. . C. . D. 5a 3 . 2 79 1 3 x + 2 x 2 + ( m + 1) x + 5 . Tìm tất cả các giá trị thực của tham số m để hàm 3 số đồng biến trên  . Câu 41: Cho hàm số f ( x ) = A. m > 3 . B. m < 3 . C. m ≥ 3 . D. m < −3 . Câu 42: Trên một chiếc đài Radio FM có vạch chia để người dùng có thể dò sóng cần tìm. Vạch ngoài cùng bên trái và vạch ngoài cùng bên phải tương ứng với 88 Mhz và 108 Mhz . Hai vạch này cách nhau 10 cm . Biết vị trí của vạch cách vạch ngoài cùng bên trái d ( cm ) thì có tần số bằng k .a d ( Mhz ) với k và a là hai hằng số. Tìm vị trí tốt nhất của vạch để bắt sóng VOV1 với tần số 102, 7 Mhz B. Cách vạch ngoài cùng bên phải 2, 46 cm . A. Cách vạch ngoài cùng bên phải 1,98cm . C. Cách vạch ngoài cùng bên trái 7,35cm . D. Cách vạch ngoài cùng bên trái 8, 23cm 2x +1 ax + 1 1 và g ( x ) = với a ≠ . Tìm các giá trị thực dương 2 x +1 x+2 của a để các tiệm cận của hai đồ thị hàm số tạo thành một hình chữ nhật có diện tích là 4 . Câu 43: Cho đồ thị hai hàm số f ( x ) = Trang 5/6 A. a = 1 . B. a = 4 . C. a = 3 . D. a = 6 . Câu 44: Một hình trụ có bán kính đáy bằng 5 và khoảng cách giữa hai đáy bằng 7 . Cắt khối trụ bởi một mặt phẳng song song với trục và cách trục một khoảng bằng 3 . Tính diện tích S của thiết diện được tạo thành. A. S = 56 . B. S = 28 . C. S = 7 34 . D. S = 14 34 . Câu 45: Xét hàm số f ( x ) liên tục trên đoạn [ 0;1] và thỏa 2 f ( x ) + 3 f (1 − x ) = 1 − x 2 .Tính A. π 4 . B. π 6 . C. π 20 . D. π 16 1 ∫ f ( x ) dx . 0 . Câu 46: Cho hàm số f ( x ) xác định trên  \ {0} và có bảng biến thiên như hình vẽ. Số nghiệm của phương trình 3 f ( 2 x − 1) − 10 = 0 là. A. 2 . B. 1 . Câu 47: Cho hai số thực dương x, y thức P= (2 x 2 + y )(2 y 2 + x) + 9 xy là A. 18 . B. 12 . C. 4 . D. 3 . thỏa mãn 2x + 2 y = 4 .Giá trị lớn nhất của biểu C. 16 . D. 21 . Câu 48: Gọi M là giá trị lớn nhất của hàm số f ( x ) = x 2 + ax + b trên đoạn [ −1;3] .Khi M đạt giá trị nhỏ nhất, tính a + 2b . A. 7 . B. −5 . C. −4 . D. −6 . Câu 49: Cho hình lập phương ABCD. A′B′C ′D′ có cạnh bằng a . Gọi O và O′ lần lượt là tâm các hình vuông ABCD và A′B′C ′D′ . Gọi M , N lần lượt là trung điểm của các cạnh B′C ′ và CD . Tính thể tích khối tứ diện OO′MN . A. a3 . 8 B. a 3 . C. a3 . 12 D. a3 . 24 m log 3 ( x + y ) = Câu 50: Cho hệ phương trình  , trong đó m là tham số thực. Hỏi có bao nhiêu giá trị 2 2 2m log 2 ( x + y ) = của m để hệ phương trình đã cho có đúng hai nghiệm nguyên? A. 3 . B. 2 . C. 1 . D. vô số. .......................... HẾT .......................... Trang 6/6 BẢNG ĐÁP ÁN ĐỀ 121 1.A 2.B 3.D 4.D 5.D 6.A 7.A 8.D 9.D 10.A 11.B 12.C 13.D 14.A 15.D 16.A 17.D 18.B 19D 20.C 21.B 22.D 23.C 24.A 25.B 26.C 27.B 28.C 29.D 30.A 31.D 32.A 33.B 34.B 35.B 36.A 37.A 38.D 39.C 40.B 41.C 42.C 43.D 44.A 45.C 46.C 47.A 48.C 49.D 50.C BẢNG ĐÁP ÁN ĐỀ 122 1.A 2.B 3.A 4.A 5.D 6.D 7.C 8.A 9.D 10.A 11.C 12.D 13.B 14.A 15.B 16.D 17.D 18.C 19B 20.C 21.C 22.C 23.A 24.B 25.A 26.C 27.B 28.D 29.C 30.A 31.A 32.B 33.B 34.A 35.D 36.D 37.A 38.A 39.D 40.C 41.C 42.B 43.A 44.A 45.C 46.C 47.A 48.C 49.C 50.A BẢNG ĐÁP ÁN ĐỀ 123 1.B 2.B 3.C 4.B 5.A 6.D 7.D 8.A 9.D 10.D 11.A 12.B 13.C 14.D 15.C 16.A 17.D 18.B 19D 20.D 21.C 22.D 23.B 24.C 25.B 26.B 27.A 28.A 29.C 30.C 31.D 32.A 33.B 34.B 35.D 36.B 37.A 38.A 39.D 40.B 41.C 42.C 43.C 44.B 45.A 46.A 47.D 48.B 49.C 50.C BẢNG ĐÁP ÁN ĐỀ 124 1.B 2.C 3.B 4.A 5.D 6.C 7.C 8.D 9.D 10.D 11.A 12.A 13.C 14.D 15.A 16.B 17.C 18.B 19.C 20.A 21.A 22.B 23.A 24.B 25.B 26.A 27.A 28.B 29.D 30.B 31.C 32.C 33.C 34.A 35.C 36.D 37.C 38.A 39.C 40.D 41.C 42.D 43.C 44.A 45.A 46.A 47.B 48.C 49.C 50.A SỞ GD&ĐT THANH HÓA TRƯỜNG THPT TÔ HIẾN THÀNH (Đề thi có 6 trang) ĐỀ THI KSCL TỐT NGHIỆP THPT LẦN 1 NĂM HỌC 2019 - 2020 MÔN TOÁN 12 Thời gian làm bài: 90 phút (không kể thời gian giao đề) Mã đề thi 121 Họ, tên thí sinh: ....................................................................... Số báo danh: ................................. Câu 1: Có bao nhiêu số có bốn chữ số khác nhau được tạo thành từ các chữ số 1, 2,3, 4,5 ? A. A54 . B. P5 . C. C54 . D. P4 . Lời giải Chọn A Số tự nhiên gồm bốn chữ số khác nhau được tạo thành từ các chữ số 1, 2,3, 4,5 là một chỉnh hợp chập 4 của 5 phần tử.Vậy có A54 số cần tìm. Câu 2: Cho cấp số cộng ( un ) có u1 = −2 và công sai d = 3 . Tìm số hạng u10 . A. u10 = −2.39 . B. u10 = 25 . C. u10 = 28 . D. u10 = −29 . Lời giải Chọn B Ta có u10= u1 + 9d =−2 + 9.3 =25 . Câu 3: Số nghiệm của phương trình 2 x A. 0 . 2 −x = 1 là B. 3 . C. 1 . D. 2 . Lời giải Chọn D Ta có: 2 x 2 −x = 1 ⇔ 2x 2 −x x = 0 .Vậy phương trình có 2 nghiệm. 20 ⇔ x 2 − x = = 0⇔ x = 1 Câu 4: Tìm số mặt của hình đa diện ở hình vẽ bên: 1 A. 11 . B. 10 . C. 12 . D. 9 . Lời giải Chọn D Quan sát hình đa diện đã cho ta đếm được tất cả có 9 mặt. y Câu 5: Tập xác định của hàm số = A. ( −∞ ;5 ) . ( x − 5) 3 là C. [5; +∞ ) . B.  \ {5} . D. ( 5; +∞ ) . Lời giải Chọn D y 3 không nguyên nên hàm số = Vì D Tập xác định của hàm số là = ( x − 5) 3 xác định ⇔ x − 5 > 0 ⇔ x > 5 . ( 5; +∞ ) . Câu 6: Cho f ( x ) , g ( x ) là các hàm số xác định và liên tục trên  . Trong các mệnh đề sau, mệnh đề nào sai? A. ∫ f ( x ) g ( x ) dx = ∫ f ( x ) dx.∫ g ( x ) dx . B. ∫ 2 f ( x ) dx = 2 ∫ f ( x ) dx . C. ∫  f ( x ) + g ( x ) dx =∫ f ( x ) dx + ∫ g ( x ) dx . D. ∫  f ( x ) − g ( x ) dx = ∫ f ( x ) dx − ∫ g ( x ) dx . Lời giải Chọn A Nguyên hàm không có tính chất nguyên hàm của tích bằng tích các nguyên hàm. Hoặc B, C, D đúng do đó là các tính chất cơ bản của nguyên hàm nên A sai. Câu 7: Thể tích của khối chóp có chiều cao bằng h và diện tích đáy bằng B là 1 A. V = Bh . 3 B. V = 1 Bh . 6 C. V = Bh . Lời giải D. V = 1 Bh . 2 Chọn A 2 1 Thể tích của khối chóp có chiều cao bằng h và diện tích đáy bằng B là V = Bh . 3 Câu 8: Cho khối nón có chiều cao h = 3 và bán kính đáy r = 5 . Thể tích khối nón đã cho bằng: A. 8π . C. 9π . Lời giải B. 15π . D. 25π . Chọn D Câu 9: Cho mặt cầu có diện tích bằng 72π ( cm 2 ) . Bán kính R của khối cầu bằng: A. R = 6 ( cm ) . C. R = 3 ( cm ) . B. R = 6 ( cm ) . D. R = 3 2 ( cm ) . Lời giải Chọn D * Ta có diện tích của mặt cầu S = 4π R 2 = 72π ⇔ R 2 = 18 ⇒ R = 3 2 . Câu 10: Cho hàm số y = f ( x ) có bảng biến thiên như sau x y′ −∞ + −2 0 3 − 0 0 + 2 0 3 − +∞ y −1 −∞ −∞ Hàm số y = f ( x ) nghịch biến trên khoảng nào dưới đây? A. ( −2;0 ) . B. ( −∞; − 2 ) . C. ( 0; 2 ) . D. ( 0; + ∞ ) . Lời giải Chọn A Dựa vào bảng biến thiên ta thấy hàm số nghịch biến trên các khoảng ( −2;0 ) và ( 2; + ∞ ) . Câu 11: Với các số thực a, b, c > 0 và a, b ≠ 1 bất kì. Mệnh đề nào dưới đây sai? A. log a = ( b.c ) log a b + log a c . B. log ac b = c log a b . C. log a b.log b c = log a c . D. log a b = 1 . log b a Lời giải Chọn B 3