Cộng đồng chia sẻ tri thức Lib24.vn

Bộ đề thi thử THPT quốc gia môn Toán năm 2018 có đáp án (Số 8)

fc930cd32580e9bc6e74b9b8427c18ee
Gửi bởi: Thái Dương 21 tháng 2 2019 lúc 16:58:09 | Được cập nhật: 5 tháng 2 lúc 1:36:33 Kiểu file: PDF | Lượt xem: 376 | Lượt Download: 0 | File size: 0 Mb

Nội dung tài liệu

Tải xuống
Link tài liệu:
Tải xuống

Các tài liệu liên quan


Có thể bạn quan tâm


Thông tin tài liệu

TRƯ NG ĐẠI HỌC NGOẠI THƯƠNG VIỆN KINH TẾ&THƯƠNG MẠI QU C TẾ Tổng s trang: 05 trang Đ THI THỬ THPT QU C GIA 2018 BÀI THI MÔN TOÁN Th i gian làm bài 90 phút, không kể th i gian phát đ Kỳ thi ngày 6/5 Họ và tên thí sinh:…………………………………………………….Số báo danh:……………………….. Câu 1. Cho đồ thị hàm số y  f  x  liên tục trên R và có đồ thị như hình vẽ dưới đây. y 7 O x 2 Khẳng định nào sau đây đúng? A. Hàm số đồng biến trên khoảng 1;3 . B. Hàm số nghịch biến trên khoảng C. Hàm số đồng biến trên khoảng  6;  .  ;3 . D. Hàm số nghịch biến trên khoảng  3;6  . Câu 2. lim (1  2 x) 2 x 3 x   x  3 A. 1 5 bằng B. 4. C. 2 D. 2 3 Câu 3. Nghiệm của phương trình sin x  1 là: A. x   k  . 2 2 B. x    k 2 . 2 C. x    k 2 . D. x    k . 2 Câu 4. Thể tích của một khối cầu có bán kính R là: 4 3 4 3 A. V   R 3 B. V   R 2 1 3 C. V   R 3 D. V  4 R 3 Câu 5. Cho hàm số y  x 4  2mx 2  m  C  với m là tham số thực. Gọi A là điểm thuộc đồ thị  C  có hoành độ bằng 1. Tìm tham số m để tiếp tuyến  với đồ thị  C  tại A cắt đường tròn T  : x 2   y  1 A. m  16 . 13 2  4 tạo thành một dây cung có độ dài nhỏ nhất B. m   13 . 16 C. m  13 . 16 D. m   Câu 6. Có bao nhiêu loại khối đa điện đều mà mỗi mặt của nó là một tam giác đều 16 . 13 1 A. 3. B. 1. C. 5. D. 2. Câu 7. Cho hàm số y  f  x  có đồ thị y  f   x  cắt trục Ox tại ba điểm có hoành độ a  b  c như hình vẽ. Xét 4 mệnh đề sau 1 : f  c   f  a   f  b   2 : f  c   f b  f  a   3 : f  a   f  b   f  c   4 : f  a   f b  Trong các mệnh đề trên có bao nhiêu mệnh đề đúng A. 4. B. 1. C. 2. D. 3. Câu 8. Cho một đa giác đều 2n đỉnh  n  2, n    . Tìm n biết số hình chữ nhật được tạo ra từ bốn đỉnh trong số 2n đỉnh của đa giác đó là 45 . A. n  12 . Câu 9. Cho 5 B. n  10 . C. n  9 . 2 D. n  45 .  f  x  dx  4. Tính I   f  2 x  1 dx 1 1 5 . 2 3 . 2 Câu 10. Trong không gian với hệ tọa độ Oxyz , cho hai mặt phẳng  P  : x   m  1 y  2 z  m  0 và A. I  2 . B. I   Q  : 2 x  y  3  0, với m là tham số thực. Để  P  và  Q  vuông góc thì giá trị của m C. I  4 . D. I  bằng bao nhiêu A. m  5 . B. m  1 . Câu 11. Cho bốn mệnh đề sau cos 3 x C 3 6x C  III  :  3x  2 x  3 x  dx  ln 6  I  :  cos 2 xdx  C. m  3 .  II  :  D. m  1 . 2x  1 dx  ln  x 2  x  2018   C x  x  2018 2  IV  :  3x dx  3x.ln 3  C Trong các mệnh đề trên có bao nhiêu mệnh đề sai? A. 3. B. 1. C. 2. D. 4. Câu 12. Cho hình chóp S . ABC có SA vuông góc mặt phẳng  ABC  tam giác ABC vuông tại. B Biết SA  2a, AB  a, BC  a 3. Tính bán kính R của mặt cầu ngoại tiếp hình chóp đã cho 2 A. a . B. 2a . C. a 2 . D. 2a 2 . 2x 1 Câu 13. Cho hàm số y  có đồ thị  C  . Tìm tất cảc các giá trị thực của tham số m để x 1 đường thẳng: d : y  x  m và cắt  C  tại hai điểm phân biệt A, B sao cho AB  4 . A. m  1 . m  0 . B.  m  3 Câu 14. Tìm tập xác định D của hàm số y   m  1 . C.  m  3 tan x  1   sinx  cos  x   3   k  , k   .  2  A. D   \ k , k   . B. D   \    C. D   \   k , k    . 2 D. m  4 .  D. D   . Câu 15. Khẳng định nào sau đây là khẳng định sai? A. cos x  1  x    k 2 . B. cos x  0  x  C. cos x  1  x  k 2 . D. cos x  0  x  Câu 16. Tập nghiệm của phương trình 9 x  4.3x  3  0  2  2  k .  k 2 . A. 0;1 . B. 1;3 . C. 0; 1 . D. 1; 3 . Câu 17. Cho hình chóp S . ABCD có đáy ABCD là hình bình hành thỏa mãn AB  a, AC  a 3, BC  2a. Biết tam giác SBC cân tại S , tam giác SCD vuông tại C và khoảng cách từ D đến mặt phẳng  SBC  bằng a3 a3 a3 . C. V  . D. V  . 3 5 3 3 5 Câu 18. Trong không gian với hệ tọa độ Oxyz , mặt cầu  S  : x 2  y 2  z 2  4 x  2 y  6 z  4  0 có A. V  2a 3 . 3 5 a 3 . Tính thể tích V của khối chóp đã cho 3 B. V  bán kính R là A. R  53 . B. R  4 2 . D. R  3 7 . C. R  10 . Câu 19. Một người dùng một cái ca hình bán cầu (Một nửa hình cầu) có bán kính là 3cm để múc nước đổ vào một cái thùng hình trụ chiều cao 10cm và bán kính đáy bằng 6cm. Hỏi người ấy sau bao nhiêu lần đổ thì nước đầy thùng? 3 (Biết mỗi lần đổ, nước trong ca luôn đầy). A. 10 lần. B. 24 lần. C. 12 lần. D. 20 lần. Câu 20. Cho hàm số y  f  x  có đạo hàm liên tục trên  và có đồ thị của hàm y  f   x  như hình vẽ. Xét hàm số g  x   f  2  x 2  . Mệnh đề nào dưới đây sai? A. Hàm số f  x  đạt cực đại tại x  2 . B. Hàm số f  x  nghịch biến trên  ; 2  . C. Hàm số g  x  đồng biến trên  2;   . D. Hàm số g  x  nghịch biến trên  ;0  . 1 3 Câu 21. Tìm tham số m để hàm số y  x 3  mx 2   m  2  x  2018 không có cực trị  m  1 A.  . B. m  1 . m  2 Câu 22. Hàm số nào sau đây đồng biến trên  C. m  2 . D. 1  m  2 . A. y   x 2  1 . B. y  x 3  3x  1 . C. y  x 2  1 . D. y  x3  3 x  1 . Câu 23. Cắt một hình trụ bởi một mặt phẳng qua trục của nó, ta được thiết diện là một hình vuông có cạnh bằng 3a . Tính diện tích toàn phần của hình trụ đã cho A. 9a 2 . B. 9 a 2 . 2 C.  Câu 24. Tìm tập xác định của hàm số f  x   1  x  1  13 a 2 . 6 D. 27 a 2 . 2 5 C. D   0;   . D. D   \ 1 . A. D   . B. D  1;   . Câu 25. Cho hai số phức z1  2  3i và z2  3  5i. Tính tổng phần thực và phần ảo của số phức w  z1  z2 B. 0 . C. 1  2i . D. 3 . A. 3 . Câu 26. Cho hàm số y  x ln x Chọn khẳng định sai trong số các khẳng định sau 1 e   A. Hàm số đồng biến trên khoảng  0;   . B. Hàm số đồng biến trên khoảng  ;   . C. Hàm số có đạo hàm y  1  ln x . D. Hàm số có tập xác định là D   0;   . 4 Câu 27. Có bao nhiêu số tự nhiên có ba chữ số dạng abc với a, b, c  0,1, 2,3, 4,5, 6 sao cho abc A. 120. B. 30. C. 40. D. 20. Câu 28. Cho lăng trụ đứng. ABCABC  có AA  a, đáy ABC là tam giác vuông cân tại A và AB  a. Tính thể tích V của khối lăng trụ đã cho. A. V  a3 . 2 B. V  a 3 . C. V  Câu 29. Tính đạo hàm của hàm số y  log 2  x  e x  A. 1  ex . ln 2 B.  1 ex . x  e x ln 2  C. a3 . 3 D. V  1 ex . x  ex D.  a3 . 6 1 . x  e x ln 2  Câu 30. Cho tam giác ABC vuông tại A, AB  6cm, AC  8cm. Gọi V1 là thể tích khối nón tạo thành khi quay tam giác ABC quanh cạnh AB và V2 là thể tích khối nón tạo thành khi quay tam giác ABC quanh cạnh AC Khi đó tỷ số A. 16 . 9 B. V1 bằng V2 4 . 3 C. 3 . 4  D.  9 . 16 Câu 31. Cho hàm số f  x  có đạo hàm là f   x    x 2  1 x  3 . Số điểm cực trị của hàm số 2 này là A. 1. B. 2. A. min P  13 . B. min P  C. 3. D. 4. C. min P  9 . D. min P  3 2 . 1 Câu 32. Xét các số thực a, b thỏa mãn điều kiện  b  a  1. Tìm giá trị nhỏ nhất của biểu thức 3  3b  1  2 P  log a    12 log b a  3  4  a 1 . 2 3 Câu 33. Cho hình phẳng D giới hạn bởi đường cong y  2  cos x , trục hoành và các đường thẳng x  0, x   . Khối tròn xoay tạo thành khi quay D quanh trục hoành có thể tích V bằng bao 2 nhiêu? A. V    1 . B. V    1 . C. V     1 . D. V     1 . Câu 34. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất bao nhiêu mặt A. Năm mặt. B. Ba mặt. Câu 35. Giải phương trình cos2 x  5sin x  4  0 A. x   2  k . B. x    2  k . C. Bốn mặt. D. Hai mặt. C. x  k 2 . D. x  Câu 36. Tìm giá trị lớn nhất của hàm số f  x   x 3  3 x 2  9 x  10 trên  2; 2  2  k 2 . 5 A. max f  x   17 .  2;2 B. max f  x   15 .  2;2 C. max f  x   15 .  2;2 D. max f  x   5 .  2;2 Câu 37. Một tổ có 6 học sinh nam và 9 học sinh nữ. Hỏi có bao nhiêu cách chọn 6 học sinh đi lao động, trong đó 2 học sinh nam A. C62  C94 . B. C62 .C94 . C. A62 . A94 . D. C92 .C64 . Câu 38. Cho số phức z thỏa mãn z  4 z  7  i  z  7  . Khi đó, môđun của z bằng bao nhiêu A. z  5 . B. z  3 . C. z  5 . D. z  3 . Câu 39. Cho khối lăng trụ đứng. ABCABC  có đáy là tam giác đều. Mặt phẳng  ABC  tạo với đáy góc 30 và tam giác ABC có diện tích bằng 8a 2 . Tính thể tích V của khối lăng trụ đã cho. B. V  2 3a 3 . C. V  64 3a 3 . D. V  16 3a 3 . A. V  8 3a 3 . Câu 40. Số các giá trị nguyên nhỏ hơn 2018 của tham số m để phương trình log 6  2018 x  m   log 4 1009 x  có nghiệm là: A. 2019 B. 2018 C. 2017 D. 2020 Câu 41. Trong không gian với hệ tọa độ Oxyz , cho hai điểm M  0; 1; 2  và N  1;1;3 . Một mặt phẳng  P  đi qua M , N sao cho khoảng cách từ điểm K  0; 0; 2  đến mặt phẳng  P  đạt giá  trị lớn nhất. Tìm tọa độ véctơ pháp tuyến n của mặt phẳng  A. n 1; 1;1 .  B. n 1;1; 1 .  C. n  2; 1;1 .  D. n  2;1; 1 . Câu 42. Cho số phức z và w thỏa mãn z  w  3  4i và z  w  9. Tìm giá trị lớn nhất của biểu thức T  z  w B. max T  14 . C. max T  4 . D. max T  106 . A. max T  176 . Câu 43. Ban đầu ta có một tam giác đều cạnh bằng 3 (hình 1). Tiếp đó ta chia mỗi cạnh của tam giác thành 3 đoạn bằng nhau và thay mỗi đoạn ở giữa bởi hai đoạn bằng nó sao cho chúng tạo với đoạn bỏ đi một tam giác đều về phía ngoài ta được hình 2. Khi quay hình 2 xung quanh trục d ta được một khối tròn xoay. Tính thể tích khối tròn xoay đó 5 3 5 3 . D. . 6 2 Câu 44. Tìm tham số m để phương trình log 2018  x  2   log 2018  mx  có nghiệm thực duy nhất A. 5 3 . 3 A. 1  m  2 . B. 9 3 . 8 B. m  1 . C. C. m  0 . D. m  2 . 6 Câu 45. Trong không gian với hệ tọa độ Oxyz , cho ba điểm A  a;0;0  , B  0; b;0  , C  0;0; c  với a, b, c là các số thực dương thay đổi tùy ý sao cho a 2  b 2  c 2  3. Khoảng cách từ O đến mặt phẳng  ABC  lớn nhất bằng A. 1 . 3 B. 3. C. 1 . 3 D. 1. Câu 46. Thầy Quang dự định sau 8 năm (kể từ lúc gửi tiết kệm lần đầu) sẽ có đủ 2 tỉ đồng để mua nhà. Mỗi năm thầy phải gửi tiết kiệm bao nhiêu tiền (số tiền mỗi năm gửi như nhau ở thời điểm cách lần gửi trước 1 năm)? Biết lãi suất 8%/năm, lãi hàng năm được nhập vào vốn và sau kì gửi cuối cùng thầy đợi đúng 1 năm để có 2 tỉ đồng. A. 0,16 tỉ đồng (1, 08)9  1, 08 B. 0,16 tỉ đồng (1, 08)8  1, 08 C. 0,16 tỉ đồng (1, 08)7  1 D. 0,16 tỉ đồng (1, 08)8  1 Câu 47. Cho các số thực a, b khác 0. Xét hàm số f ( x)  a  bxe x ( x  1) . Biết ( x  1)3 1 f '(0)  22;  f ( x) dx  5. Tính a + b? 0 B. 7 A. 19 C. 8 D. 10 9t với m là tham số thực. Gọi S là tập hợp tất cả các giá trị của 9t  m 2 m sao cho f ( x)  f ( y )  1 Với mọi số thực x, y thỏa mãn e x  y  e( x  y ) . Tìm số phần tử của S. A. 0 B. 1 C. Vô số D. 2. 2x 1    19  Câu 49. Cho hàm số f ( x)  x . Khi đó tổng f (0)  f    ...  f   có giá trị bằng: 2 2  10   10  Câu 48. Xét hàm số f (t )  A. 59 6 Câu 50. Phương trình A. 2 nghiệm B. 10 C. 19 2 D. 28 3 x  512  1024  x  16  4 8  x  512 1024  x  có bao nhiêu nghiệm? B. 8 nghiệm C. 4 nghiệm D. 3 nghiệm 7 KỲ THI KHẢO SÁT LẦN 4 NĂM 2017 - 2018 S GD & ĐT HÀ N I TRƯỜNG THPT LÝ THÁNH TÔNG Bài thi: TOÁN Thời gian làm bài: 90 phút (Đề thi gồm 6 trang) Họ và tên thí sinh:………………………………….. MÃ ĐỀ: 001 Số báo danh:………………………………………... Câu 1: Cho số phức z = 6 + 7i. Số phức liên hợp của z có điểm biểu diễn là: A. (6; 7) B. (6; -7) C. (-6; 7) D. (-6; -7) Câu 2: Ti p tuy n của đồ thị hàm số y  4 x  3x  1 tại điểm có hoành đ bằng 1 có phương trình là: 3 A. y = -9x+11 B. y = 9x-7 C. y = 9x-11 D. y = -9x+7 Câu 3: Hình bên là đồ thị nào dưới đây? A. y = 3x 3  1 B. y = x 2  1 C. y = x 4  x 2  1 D. y = x 4  3x 2  1 Câu 4: Tính đạo hàm của hàm số y  2 x 1 x 1 A. y' = 2 log2 2 x1 D. y' = ln 2 C. y' =  x  1 2 ln2 x 1 x B. y' = 2 ln2 1 Câu 5: Tính I =  xe1 x dx 0 A. 1- e B. e - 2 C.1 D. -1 Câu 6: Họ nguyên hàm của hàm số f(x) = sin2x là: A. -cos2x+c C. -cos 2 x  c B. cos2x+c D. -sin 2 x  c Câu 7: Số nào trong các số phức sau là số thực? A. 1  2i    1  2i  B.  3  2i    3  2i  C.  5  2i   D.  5  2i     3  2i  3  2i  Câu 8: Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, cạnh bên SA vuông góc với đáy và SA = a. Tính theo a thể tích V của khối chóp S.ABCD. A. V  a3 1 B. V  a3 6 C. V  Mã đề 001 - trang 1/6 1 3 a 2 1 D. V  a 3 3 Câu 9: Trong không gian với hệ tọa đ Oxyz, cho ba điểm A(0; 6; 0), B(0; 0; -2) và C(-3; 0; 0). Phương trình mặt phẳng (ABC) là: A. -2x+y-3z+6=0 B. x y z + + =1 6 2 3 C. 2x-y+3z+6=0 D. x y z   1 3 6 2 Câu 10: Trong không gian Oxyz, tìm phương trình tham số của trục Oz? x  t  A.  y  t z  t  x  t  B.  y  0 z  0  x  0  C.  y  0 z  t  x  0  D.  y  t z  0  Câu 11: Cho tập hợp A = {1; 2; 3; 4}. Có bao nhiêu tập con của A có hai phần tử? A. A24 B. C24 Câu 12: Tính lim A. - D. 22 C. 2! 2018n  1 n3 1 3 C. + B. 2018 D. 0 1  x2 , tìm khẳng định đúng. Câu 13:Cho hàm số y  x A. Đồ thị hàm số có 2 đư ng tiệm cận ngang là y = 1 và y = -1. B. Đồ thị hàm số chỉ có m t đư ng tiệm cận đứng là đư ng thẳng x = 0. C. Đồ thị hàm số có 3 đư ng tiệm cận là các đư ng thẳng x = 0, y = 1 và y = -1. D. Đồ thị hàm số không có tiệm cận. x4 3  x 2  cắt trục hoành tại mấy điểm? Câu 14: Đồ thị hàm số y   2 2 A. 4 B. 0 C. 2 D. 3 Câu 15: Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y  x  6 x  7 trên đoạn 3 2 [1; 5]. Khi đó tổng M + m bằng: A.-23 Câu 16: Cho B. -18 3 4 4 5 C. -16 1 2 D. -11 2 3 a  a , logb  logb . Khẳng định nào sau đây là đúng? A. a > 1, 0 < b < 1 C. 0 < a < 1,0 < b < 1 B. a > 1, b > 1 D. 0 < a < 1, b > 1   Câu 17: Tập xác định của hàm số log  x  2 x  3 là: A. \ 3;1 2 B.  ; 3  1;   2 x 2 7 x 5 Câu 18: Số nghiệm của bất phương trình 3 A.1 B. 2 C.  3;1 D. S=  ; 3  1;    1 là? C. 3 Mã đề 001 - trang 2/6 D. 4 1 Câu 19: Cho hàm số f(x) có đạo hàm và liên tục trên đoạn [-1; 1] thỏa mãn  f ' x  dx  5 và f(-1) = 4. 1 Tìm f(1)? A. f 1  1 B. f 1  1 C. f 1  9 D. f 1  9 Câu 20: Bi t z1 = 2 – i là m t nghiệm phức của phương trình z + bz + c = 0(b, c ) , gọi nghiệm còn lại 2 là z2. Tìm số phức w = bz1 + cz2. A. w  18  i B. w  18  i C. w  2  9i D. w  2  9i Câu 21: M t hình nón có thi t diện qua trục là m t tam giác vuông cân có cạnh góc vuông bằng a. Diện tích xunh quanh của hình nón bằng: A.  a2 B. 2  a2 2 3 a 2 C. 2 2 D.  a 2 Câu 22: Trong không gian Oxyz, mặt cầu  S  : x  y  z  4 x  2 y  2 z  3  0 có tọa đ tâm I và 2 2 2 bán kính R là: A. I  2; 1;1 ; R = 9 B. I  2;1; 1 ; R = 3 C. I  2; 1;1; R = 3 D. I  2;1; 1 ; R = 9 x 1 y z 1   Câu 23: Trong không gian Oxyz, cho đư ng thẳng d : và mặt phẳng 1 3 1  P  : 3x  3 y  2 z  1  0 . Mệnh đề nào sau đây là mệnh đề đúng? A. d song song với (P). B. d nằm trong (P). C. d cắt và không vuông góc với (P). D. d vuông góc với (P). Câu 24: Với số nguyên dương n thỏa mãn Cn  n  27 , số hạng không chứa x trong khai triển của nhị 2 n 2  thức Newton  x   bằng: x  A. 84 B. 8 C. 5376 D. 672 Câu 25: Đ i thanh niên xung kích của trư ng THPT Lý Thánh Tông có 15 học sinh gồm 4 học sinh khối 10, 6 học sinh khối 11 và 5 học sinh khối 12. Chọn ngẫu nhiên 4 học sinh trong đ i xung kích để làm nhiệm vụ trực tuần. Tính xác suất để chọn được 4 học sinh sao cho m i khối có ít nhất m t học sinh? A. 91 96 B. 48 91 C. 2 91 D. 222 455 Câu 26: Cho hình chóp S.ABCD có đáy ABCD là hình vuông và SA vuông góc với mặt phẳng (ABCD). Tìm khẳng định đúng trong các khẳng định sau: A. AB vuông góc với mặt phẳng (SAC). B. AB vuông góc với mặt phẳng (SBC). C. AB vuông góc với mặt phẳng (SAD). D. AB vuông góc với mặt phẳng (SCD). Mã đề 001 - trang 3/6