Cộng đồng chia sẻ tri thức Lib24.vn

Bài 5. Đường Elip

Gửi bởi: Phạm Thọ Thái Dương 12 tháng 10 2020 lúc 15:14:01


Mục lục
* * * * *

Bài 30 trang 102 SGK Hình học 10 Nâng cao

Cho elip (E) có phương trình chính tắc \({{{x^2}} \over {{a^2}}} + {{{y^2}} \over {{b^2}}} = 1\). Hỏi trong các mệnh đề sau, mệnh đề nào đúng?

LG a

Tiêu cự của (E) là 2c, trong đó \({c^2} = {a^2} - {b^2}.\)

Lời giải chi tiết:

Là mệnh đề đúng.

LG b

(E) có độ dài trục lớn bằng 2a, độ dài trục bé bằng 2b,

Lời giải chi tiết:

Là mệnh đề đúng.

LG c

(E) có tâm sai \(e =  - {c \over a}.\)

Lời giải chi tiết:

Là mệnh đề sai.

Mệnh đề đúng là (E) có tâm sai \(e =  {c \over a}.\)

LG d

Tọa độ các tiêu điểm của (E) là \({F_1} = ( - c;0),{F_2} = (c;0).\)

Lời giải chi tiết:

Là mệnh đề đúng.

LG e

Điểm (b, 0) là một đỉnh của (E).

Lời giải chi tiết:

Là mệnh đề sai.

Mệnh đề đúng là: Điểm (0; b) là một đỉnh của (E).

Bài 31 trang 103 SGK Hình học 10 Nâng cao

Tìm tọa độ các tiêu điểm, các đỉnh, độ dài trục lớn, độ dài trục bé của mỗi elip có phương trình sau

LG a

\({{{x^2}} \over {25}} + {{{y^2}} \over 4} = 1\)

Phương pháp giải:

Sử dụng công thức \({a^2} = {b^2} + {c^2}\)

Xác định a, b, c suy ra các tọa độ đỉnh và tiêu điểm.

Lời giải chi tiết:

Ta có: \(a = 5;b = 2;\)

\({a^2} = {b^2} + {c^2} \Rightarrow {c^2} = {a^2} - {b^2} \)

\(\Rightarrow c = \sqrt {{a^2} - {b^2}}  = \sqrt {21} \)

Tọa độ các tiêu điểm: \({F_1}\left( { - \sqrt {21} ;0} \right);{F_2}\left( {\sqrt {21} ;0} \right)\)

Tọa độ các đỉnh: \({A_1}\left( { - 5;0} \right);{A_2}\left( {5;0} \right);\) \({B_1}\left( {0; - 2} \right);{B_2}\left( {0;2} \right)\)

Độ dài trục lớn \(2a = 10\), độ dài trục bé \(2b = 4\).

LG b

\({{{x^2}} \over 9} + {{{y^2}} \over 4} = 1\)

Lời giải chi tiết:

Ta có: \(a = 3;b = 2;\)

\({a^2} = {b^2} + {c^2} \Rightarrow {c^2} = {a^2} - {b^2}\)

\(\Rightarrow c = \sqrt {{a^2} - {b^2}}  = \sqrt 5 .\)

Tọa độ các tiêu điểm: \({F_1}\left( { - \sqrt 5 ;0} \right);{F_2}\left( {\sqrt 5 ;0} \right)\)

Tọa độ các đỉnh: \({A_1}\left( { - 3;0} \right);{A_2}\left( {3;0} \right);\) \({B_1}\left( {0; - 2} \right);{B_2}\left( {0;2} \right).\)

Độ dài trục lớn \(2a = 6\) , độ dài trục bé \(2b = 4\)

LG c

\({x^2} + 4{y^2} = 4.\)

Lời giải chi tiết:

Ta có: \({x^2} + 4{y^2} = 4 \Leftrightarrow {{{x^2}} \over 4} + {{y^2}\over 1} = 1\)

\( \Rightarrow a = 2;b = 1;\)

\({a^2} = {b^2} + {c^2} \Rightarrow {c^2} = {a^2} - {b^2}\)

\(\Rightarrow c = \sqrt {{a^2} - {b^2}}  = \sqrt 3 .\)

Tọa độ các tiêu điểm: \({F_1}\left( { - \sqrt 3 ;0} \right);{F_2}\left( {\sqrt 3 ;0} \right)\)

Tọa độ các đỉnh: \({A_1}\left( { - 2;0} \right);{A_2}\left( {2;0} \right);\) \({B_1}\left( {0; - 1} \right);{B_2}\left( {0;1} \right).\)

Độ dài trục lớn \(2a = 4\), độ dài trục bé \(2b = 2\).

Bài 32 trang 103 SGK Hình học 10 Nâng cao

Viết phương trình chính tắc của đường elip (E) trong mỗi trường hợp sau:

LG a

(E) có độ dài trục lớn bằng 8 và tâm sai \(e = {{\sqrt 3 } \over 2};\)

Lời giải chi tiết:

Gọi phương trình chính tắt của elip (E) là: \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\)

Ta có:

\(\eqalign{
& 2a = 8 \Leftrightarrow a = 4 \cr 
& e = {c \over a} = {{\sqrt 3 } \over 2} \Rightarrow c = 2\sqrt 3 \cr 
& {b^2} = {a^2} - {c^2} = 16 - 12 = 4 \cr} \)

Vậy \((E):{{{x^2}} \over {16}} + {{{y^2}} \over 4} = 1.\)

LG b

(E) có độ dài trục bé bằng 8 và tiêu cự bằng 4;

Lời giải chi tiết:

Gọi phương trình chính tắt của elip (E) là: \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\)

Ta có: 

\(\eqalign{
& 2b = 8 \Leftrightarrow b = 4 \cr 
& 2c = 4 \Leftrightarrow c = 2 \cr 
& {a^2} = {b^2} + {c^2} = 16 + 4 = 20 \cr} \) 

Vậy \((E):{{{x^2}} \over {20}} + {{{y^2}} \over {16}} = 1.\)

LG c

(E) có một tiêu điểm là \(F(\sqrt 3 ;0)\) và đi qua điểm \(M\left( {1;{{\sqrt 3 } \over 2}} \right).\)

Lời giải chi tiết:

Gọi phương trình chính tắt của elip (E) là: \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\)

Ta có: \(F(\sqrt 3 ;0)\) \( \Rightarrow  c = \sqrt 3  \Rightarrow {a^2} - {b^2} = 3\)

Giả sử: \((E):{{{x^2}} \over {{a^2}}} + {{{y^2}} \over {{b^2}}} = 1\)

\(M\left( {1;{{\sqrt 3 } \over 2}} \right) \in (E)\) nên \({1 \over {{a^2}}} + {3 \over {4{b^2}}} = 1\)

Ta có hệ phương trình:

\(\eqalign{
& \left\{ \matrix{
{a^2} - {b^2} = 3 \hfill \cr 
{1 \over {{a^2}}} + {3 \over {4{b^2}}} = 1 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
{a^2} = {b^2} + 3 \hfill \cr 
{1 \over {{b^2} + 3}} + {3 \over {4{b^2}}} = 1 \hfill \cr} \right. \cr 
& \Leftrightarrow \left\{ \matrix{
{a^2} = {b^2} + 3 \hfill \cr 
4{b^2} + 3{b^2} + 9 = 4{b^4} + 12{b^2} \hfill \cr} \right. \cr&\Leftrightarrow \left\{ \matrix{
{a^2} = {b^2} + 3 \hfill \cr 
4{b^4} + 5{b^2} - 9 = 0 \hfill \cr} \right. \cr 
& \Leftrightarrow \left[ \matrix{
{b^2} = - {9 \over 4}\,(loai) \hfill \cr 
{b^2} = 1 \Rightarrow {a^2} = 4 \hfill \cr} \right. \cr} \)

Vậy  \((E):{{{x^2}} \over 4} + {{{y^2}} \over 1} = 1\)

Bài 33 trang 103 SGK Hình học 10 Nâng cao

Cho elip \((E):{{{x^2}} \over 9} + {{{y^2}} \over 1} = 1.\)

LG a

Tính độ dài dây cung của (E) đi qua một tiêu điểm và vuông góc với trục tiêu (đoạn thẳng nối hai điểm của elip gọi là dây cung của elip, trục chứa các tiêu điểm gọi là trục tiêu của elip).

Lời giải chi tiết:

+ Ta có: \({a^2} = 9,{b^2} = 1 \) \(\Rightarrow {c^2} = {a^2} - {b^2} = 9 - 1 = 8 \)

\(\Rightarrow c = 2\sqrt 2 \)

\(\Rightarrow  {F_1}\left( { - 2\sqrt 2 ;0} \right);\,{F_2}\left( {2\sqrt 2 ;0} \right)\)

Đường thẳng đi qua tiêu điểm \(F_2\) và vuông góc trục tiêu có phương trình \(x = 2\sqrt 2 \)

Tọa độ giao điểm của đường thẳng với (E) thỏa mãn hệ phương trình:

\( \left\{ \begin{array}{l}
x = 2\sqrt 2 \,\,\,\,\,\,\,\,\left( 1 \right)\\
\frac{{{x^2}}}{9} + \frac{{{y^2}}}{1} = 1\,\,\left( 2 \right)
\end{array} \right.\)

Thay (1) và (2) ta được:

\({8 \over 9} + {{{y^2}} \over 1} = 1 \Leftrightarrow {y^2} = {1 \over 9} \Leftrightarrow y =  \pm {1 \over 3}.\) 

Vậy \({M_1}\left( {2\sqrt 2 ;{1 \over 3}} \right);{M_2}\left( {2\sqrt 2 ; - {1 \over 3}} \right)\) và độ dài dây cung cần tìm là:

\({M_1}{M_2} \) \(= \sqrt {{{\left( {2\sqrt 2  - 2\sqrt 2 } \right)}^2} + {{\left( { - \frac{1}{3} - \frac{1}{3}} \right)}^2}} \) \( = \sqrt {0 + \frac{4}{3}}  = \frac{2}{3}\)

LG b

Tìm trên (E) điểm M sao cho \(M{F_1} = 2M{F_2}\) , trong đó \({F_1},{F_2}\) lần lượt là các tiêu điểm của (E) nằm bên trái và bên phải trục tung.

Phương pháp giải:

Sử sụng công thức tính bán kính qua tiêu: \(M{F_1} = a + \frac{c}{a}x,M{F_2} = a - \frac{c}{a}x\)

Lời giải chi tiết:

Ta có:

\(\eqalign{
& M{F_1} = a + {c \over a}x = 3 + {{2\sqrt 2 } \over 3}x \cr 
& M{F_2} = a - {c \over a}x = 3 - {{2\sqrt 2 } \over 3}x \cr 
& M{F_1} = 2M{F_2}\cr & \Leftrightarrow 3 + {{2\sqrt 2 } \over 3}x = 6 - {{4\sqrt 2 } \over 3}x \cr&\Leftrightarrow 2\sqrt 2 x = 3 \Leftrightarrow x = {{3\sqrt 2 } \over 4}. \cr} \) 

Thay \(x = {{3\sqrt 2 } \over 4}\) vào phương trình elip ta được:

\({2 \over {16}} + {y^2} = 1 \Leftrightarrow {y^2} = {7 \over 8} \Leftrightarrow y =  \pm {{\sqrt {14} } \over 4}.\)

Vậy \({M_1}\left( {{{3\sqrt 2 } \over 4};{{\sqrt {14} } \over 4}} \right);{M_2}\left( {{{3\sqrt 2 } \over 4}; - {{\sqrt {14} } \over 4}} \right).\)

Bài 34 trang 103 SGK Hình học 10 nâng cao

Vệ tinh nhân tạo đầu tiên được Liên Xô (cũ) phóng từ Trái đất năm 1957. Quỹ đạo của vệ tinh đó là một đường elip nhận tâm Trái Đất là một tiêu điểm. Người ta đo được vệ tinh cách bề mặt Trái Đất gần nhất là 583 dặm và xa nhất là 1342 dặm (1 dặm \( \approx 1,609km\)). Tìm tâm sai của quỹ đạo đó biết bán kính của Trái Đất xấp xỉ 4000 dặm.

Lời giải chi tiết

Giả sử tâm trái đất là: \({F_1}\left( { - c;0} \right)\), M là điểm biểu thị cho vệ tinh trên đường elip.

Khoảng cách từ M đến tâm trái đất là \(M{F_1} = a + \frac{c}{a}x\)

Ta có: \( - a \le x \le a \Rightarrow  - c \le \frac{c}{a}x \le c \) \(\Rightarrow a - c \le a + \frac{c}{a}x \le a + c \) \(\Rightarrow a - c \le M{F_1} \le a + c\)

\(M{F_1}\) có giá trị nhỏ nhất là: \(a - c\) và có giá trị lớn nhất là \(a + c \).

Do đó

\(\eqalign{
& a + c = 1342 + 4000 = 5342 \cr 
& a - c = 583 + 4000 = 4583 \cr} \) 

\( \Rightarrow \left\{ \begin{array}{l}
a = 4962,5\\
c = 379,5
\end{array} \right. \) \(\Rightarrow e = \frac{c}{a} = \frac{{379,5}}{{4962,5}} \approx 0,0765\)

Bài 35 trang 103 SGK Hình học 10 nâng cao

Trong mặt phẳng tọa độ Oxy, cho điểm A chạy trên trục Ox, điểm B chạy trên trục Oy nhưng độ dài đoạn AB bằng a không đổi. Tìm tập hợp các điểm M thuộc đoạn AB sao cho \(MB = 2MA.\)

Lời giải chi tiết

Giả sử: \(A\left( {{x_0};0} \right);B\left( {0;{y_0}} \right)\)

\(AB = a \Leftrightarrow \sqrt {x_0^2 + y_0^2}  = a \Leftrightarrow x_0^2 + y_0^2 = {a^2}\)

M thuộc đoạn AB và \(MB = 2MA\) nên \(\overrightarrow {AM}  = {1 \over 3}\overrightarrow {AB} \)

Giả sử: M(x, y) , khi đó: \(\overrightarrow {AM}  = \left( {x - {x_0};y} \right),\overrightarrow {AB}  = \left( { - {x_0};{y_0}} \right);\)

\(3\overrightarrow {AM}  = \overrightarrow {AB} .\) 

\(\eqalign{
& \Leftrightarrow \left\{ \matrix{
3\left( {x - {x_0}} \right) = - {x_0} \hfill \cr 
3y = {y_0} \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
{x_0} = {3 \over 2}x \hfill \cr 
{y_0} = 3y \hfill \cr} \right. \cr 
& x_0^2 + y_0^2 = {a^2} \Leftrightarrow {9 \over 4}{x^2} + 9{y^2} = {a^2} \cr&\Leftrightarrow {{{x^2}} \over {{{\left( {{{2a} \over 3}} \right)}^2}}} + {{{y^2}} \over {{{\left( {{a \over 3}} \right)}^2}}} = 1 \cr} \)

Vậy tập hợp điểm M là elip có phương trình là: 

\({{{x^2}} \over {{{\left( {{{2a} \over 3}} \right)}^2}}} + {{{y^2}} \over {{{\left( {{a \over 3}} \right)}^2}}} = 1.\)


Được cập nhật: 18 tháng 4 lúc 8:41:22 | Lượt xem: 368