Cộng đồng chia sẻ tri thức Lib24.vn

172 câu trắc nghiệm cực trị hàm số

0cb79f7f0b866c7c6960eff5fb38e52e
Gửi bởi: đề thi thử 17 tháng 7 2017 lúc 18:13 | Được cập nhật: 27 tháng 2 lúc 13:15 Kiểu file: PDF | Lượt xem: 291 | Lượt Download: 7 | File size: 0 Mb

Nội dung tài liệu

Tải xuống
Link tài liệu:
Tải xuống

Các tài liệu liên quan


Có thể bạn quan tâm


Thông tin tài liệu

CHUYÊN ĐỀ HÀM SỐ LUYỆN THI THPT QUỐC GIA 2016 - 2017



Tổng hợp và biên soạn: Phạm Văn Huy

172 CÂU TRẮC NGHIỆM CỰC TRỊ HÀM SỐ

ĐƯỢC PHÂN DẠNG THEO MỨC ĐỘ

CÓ ĐÁP ÁN VÀ HƯỚNG DẪN GIẢI CHI TIẾT

TOANMATH.COM



NGƯỜI BUỒN CẢNH CÓ VUI ĐÂU BAO GIỜ



ĐT: 0934286923



Email: cohangxom1991@gmail.com



CHUYÊN ĐỀ HÀM SỐ LUYỆN THI THPT QUỐC GIA 2016 - 2017

CỰC TRỊ CỦA HÀM SỐ

DẠNG 1: Cực trị và các yếu tố của cực trị ( Mức độ thông hiểu)

Câu 1: Cho hàm số y 2 x3  5x 2  4 x 1999 . Gọi x1 và x2 lần lượt là hoành độ hai

điểm cực đại và cực tiểu của hàm số. Kết luận nào sau đây là đúng?

1

3

3

2

Câu 2: Số điểm cực trị của hàm số y 2 x  5x  4 x 1999 là:



A. x2  x1 



2

3



B. 2 x2  x1 



1

3



C. 2 x1  x2 



D. x1  x2 



1

3



A. 1

B. 2

C. 3

D. 4

3

2

Câu 3: Hàm số y 2 x  3x  12x  2016 có hai điểm cực trị lần lượt là A và B.

Kết luận nào sau đây là đúng?

A. A  2; 2035

B. B 2; 2008

C. A  2; 2036

D. B 2; 2009

Câu 4: Giá trị cực đại của hàm số y 2 x3  5x2  4 x 1999

54003

D. 4

27

Câu 5: Giá trị cực tiểu của hàm số y 2 x3  3x 2  12x  2016 là:



A.



54001

27



B. 2



C.



A. 2006

B. 2007

C. 2008

3

2

Câu 6: Hàm số y 3x  4 x  x  2016 đạt cực tiểu tại:

A. x 



2

9



B. x 1



C. x 



1

9



D. 2009

D. x 2



Câu 7: Cho hàm số y x3  3x2  9 x  2017 . Gọi x1 và x2 lần lượt có hoành độ tại

hai điểm cực đại và cực tiểu của hàm số. Kết luận nào sau đây là đúng?

A. x1  x2 4

B. x2  x1 3

2

C. x1 x2  3

D.  x1  x2  8

Câu 8: Hàm số y  x3  8x 2  13x  1999 đạt cực đại tại:

13

3



A. x 



B. x 1



C. x 



 13

3



D. x 2



Câu 9: Hàm số y x3  10x 2 17x  25 đạt cực tiểu tại:

10

3



A. x 



cB. x 25



C. x 17



17

3



D. x 



Câu 10: Cho hàm số y 2x3  3x 2  12x  2016 . Gọi x1 và x2 lần lượt có hoành độ

tại hai điểm cực đại và cực tiểu của hàm số. Kết luận nào sau đây là đúng?

A. x1  x2 4

B. x2  x1 3

2

C. x1 x2  3

D.  x1  x2  8

Câu 11: Hàm số y 3x3  4 x 2  x  258 đạt cực đại tại:

A. x 



2

9



B. x 1



C. x 



1

9



D. x 2



Câu 12: Hàm số y  x3  8x2  13x  1999 đạt cực tiểu tại:

A. x 3



B. x 1



C. x 



1

3



D. x 2



Câu 13: Biết hàm số y x3  6 x2  9 x  2 có 2 điểm cực trị là A x 1 ; y1  và

B x 2 ; y2  . Nhận định nào sau đây không đúng ?

A. x1  x2 2

B. y1 y 2  4

C. y1  y2

D. AB 2 6

Câu 14: Hàm số nào dưới đây có cực đại ?

ĐT: 0934286923



Email: cohangxom1991@gmail.com



CHUYÊN ĐỀ HÀM SỐ LUYỆN THI THPT QUỐC GIA 2016 - 2017

A. y x4  x2 1

C.



B. y 



x 2

 x2  2



x 1

x2



D. y  x 2  2 x



Câu 15: Tổng số điểm cực đại của hai hàm số y  f  x  x 4  x 2  3 và

y g x   x 4  x 2  2 là:

A. 1

B. 2

C. 3

D. 4

3

2

Câu 16: Tổng số điểm cực tiểu của hai hàm số y  f  x  x  x  3 và

y g x   x 4  x 2  2 là :

A. 1

B. 2

C. 3

D. 4

Câu 17: Cho hai hàm số y  f  x  x3  x 2  3 và y g x  



x 4 3x 2



 x  2 . Tổng

4

2



số điểm cực trị, cực đại, cực tiểu của 2 hàm số lần lượt là:

A. 5; 2;3

B. 5;3; 2

C. 4; 2; 2

D. 3;1; 2

3

2

Câu 18: Cho hàm số y  x  6 x  9 x  4 C  . Toạ độ điểm cực đại của đồ thị

hàm số là:

A. A 1; 8

B. A 3;  4 

C. A 2;  2 

D. A  1;10

Câu 19: Cho hàm số y x3  3x 2  4 C  . Gọi Avà B là toạ độ 2 điểm cực trị của

(C). Diện tích tam giác OAB bằng:

A. 4

B. 8

C. 2

D. 3

3

2

Câu 20: Đồ thị hàm số y x  3x  9 x  2 C  có điểm cực đại cực tiểu lần lượt

là  x1 ; y1  và  x2 ; y2  . Tính T x1 y2  x2y 1

A. 4

B. -4

C. 46

D. -46

3

2

Câu 21: Cho hàm số y x  x  x 1C  . Khoảng cách từ O đến điểm cực tiểu

của đồ thị hàm số là:

A. 3



B. 2



C.



1105

729



D. 1



Câu 22: Khẳng định nào sau đây là sai:

A. Hàm số y x3  3x  2 không có cực trị

B. Hàm số y x3  2 x2  x có 2 điểm cực trị

C. Hàm số y x3  6 x 2 12x  2 có cực trị

D. Hàm số y x3 1 không có cực trị.

Câu 23: Giả sử hàm số y x3  3x2  3x  4 có a điểm cực trị, hàm số

y x4  4 x2  2 có b điểm cực trị và hàm số y 



2x  1

có c điểm cực trị. Giá trị

x 1



của T a  b  c là:

A. 0

B. 3

C. 2

D. 1

2

Câu 24: Hàm số y  f  x   x  2 x có bao nhiêu điểm cực trị ?

A. 0

B. 1

C. 2

D. 3

4

2

Câu 25: Cho hàm số y  f  x   x  4 x  2 . Chọn phát biểu đúng:

A. Hàm số trên có 1 điểm cực đại và 2 điểm cực tiểu

B. Hàm số trên có 2 điểm cực đại và 1 điểm cực tiểu

C. Hàm số có 1 điểm cực trị là điểm cực đại.

ĐT: 0934286923



Email: cohangxom1991@gmail.com



CHUYÊN ĐỀ HÀM SỐ LUYỆN THI THPT QUỐC GIA 2016 - 2017

D. Hàm số có 1 điểm cực trị là điểm cực tiểu.

Câu 26: Hàm số nào sau đây không có cực trị:

x 1

A. y x  x 1

B. y 

C. y x4  3x3  2

x 1

3

Câu 27: Hàm số y  f  x  x  x 2  x  4 đạt cực trị khi :

3



2



x2  x

D. y 

x 1



 x 0

 x 1



B.

C. 

D.

 x  2

 x  1

3

3





4

2

Câu 28: Cho hàm số y  f  x  3x  2 x  2 . Chọn phát biểu sai:

 x 1

A. 

 x 3



 x  1



 x 1

3





A. Hàm số trên có 3 điểm cực trị.

B. Hàm số trên có 2 điểm cực đại và 1 điểm cực tiểu.

C. Hàm số trên có 1 điểm cực đại và 2 điểm cực tiểu.

D. Hàm số có cực đại và cực tiểu.

Câu 29: Cho hàm số y  f  x  2 x3 



5x2

 x  4 đạt cực đại khi:

2



1

1

C. x  1

D. x 

6

6

3

Câu 30: Hàm số y  f  x  x  3x 1 có phương trình đường thẳng đi qua 2



A. x 1



B. x  



điểm cực trị là

A. 2 x  y  1 0

B. x  2 y  1 0

C. 2 x  y  1 0

D. x  2 y 1 0

3

2

Câu 31: Hàm số C  : y x  2 x  x  1 đạt cực trị khi :

 x 1

A.  1

x

3



 x 3

C. 

 x  1

3





 x  1

B.  1

x

3



 x 3

D. 

 x  10

3





Câu 32: Cho hàm số C  : y 2 x3  2 x . Hệ thức liên hệ giữa giá trị cực đại (yCĐ)

và giá trị cực tiểu (yCT) của hàm số đã cho là

A. yCT 2 yCĐ

B. 2 yCT 3 yCĐ

C. yCT  yCĐ

D. yCT  yCĐ

Câu 33: Cho hàm số C  : y  x2  x 1 . Hàm số đạt cực trị tại

A. x 1



B. x 



1

2



1

2



C. x  



D. x  1



2



Câu 34: Hàm số C  : y  x 2  2   3 đạt cực đại khi :

A. x   2

B. x  2

C. x 1



D. x 0



2



x  2x  1

x 1

(1). Hàm số đạt cực đại tại x  1

(2). Hàm số có  3xCĐ xCT



Câu 35: Cho hàm số C  : y 



(3). Hàm số nghịch biến trên  ;  1

(4). Hàm số đồng biến trên  1;3

Các phát biểu đúng là:

ĐT: 0934286923



Email: cohangxom1991@gmail.com



CHUYÊN ĐỀ HÀM SỐ LUYỆN THI THPT QUỐC GIA 2016 - 2017

A. (1),(4)

B. (1),(2)

C. (1),(3)

D. (2),(3)

2

4

Câu 36: Cho hàm số C  : y 2 x  x . Chọn phát biểu sai trong các phát biểu

dưới đây:

A. Hàm số đạt cực tiểu tại x 0

B. Hàm số có giá trị cực đại bằng 1.

C. Hàm số có hai cực trị.

D. Điểm cực tiểu của đồ thị hàm số là



0; 0

Câu 37: Điểm cực đại của đồ thị hàm số y x3  6 x 2  15x  5 là:

A. 5;  105

B.  1;8

C.  1;3

D. 5;  100

Câu 38: Điểm cực đại của đồ thị hàm số y  x3  3x2  5 là

A. 0;5 

B. 0; 0

C. 2;9 

D. 2;5 

3

2

Câu 39: Điểm cực tiểu của đồ thị hàm số y x  2 x  x 1 là:

A. 1;1



1 31

C.  ; 



B. 1; 0



1 31

D.   ; 



 3 27 

 3 27 

Câu 40: Điểm cực tiểu của đồ thị hàm số y  2 x3  2 x2  2 x  5 là:

1 125

1 125

A. 1; 7

B.   ; 

C.  ; 

D.  1; 7

 3 27 

 3 27 



Câu 41: Giả sử hai điểm A, B lần lượt là cực đại và cực tiểu của đồ thị hàm số

y x3  3x  4 khi đó độ dài đoạn thẳng AB là:

A. 5



B. 3 5



C.



1

5



D. 2 5



1

3



1 2

x  2x  2

2

19

4

16

3

A. ycd  ; yct 

B. ycd  ; yct 

6

3

9

4

 19

3

19

4

C. ycd 

; yct 

D. ycd  ; yct 

6

4

6

3

3

Câu 43: Điểm cực tiểu của đồ thị hàm số hàm số y x  3x2  6 là:



Câu 42: Tìm cực trị của hàm số y  x3 



A. x0 0



B. x0 4



C. x0 3



D. x0 2



2

3



Câu 44: Giá trị cực đại của hàm số y   x3  2 x  2 là:

A.



2

3



B. 1



C.



10

3



D. -1



Câu 45: Cho hàm số y  x3  2 x2  x  4 . Tổng giá trị cực đại và cực tiểu của

hàm số là:

1

121

212

C.

D.

3

27

72

1

Câu 46: Cho hàm số y  x3  2 x 2  3x  1 . Khoảng cách giữa 2 điểm cực đại, cực

3



A.



212

27



B.



tiểu là:

2 13

2 37

C.

3

3

3

2

Câu 47: Hàm số y x  3x  9 x  7 đạt cực đại tại :

 x  1

A. x  1

B. x 3

C. 

 x 3



A.



2 10

3



B.



D.



2 31

3

 x  1

 x 3



D. 



Câu 48: Hàm số y  x3  5x2  3x 12 có điểm cực tiểu có tọa độ là:

ĐT: 0934286923



Email: cohangxom1991@gmail.com



CHUYÊN ĐỀ HÀM SỐ LUYỆN THI THPT QUỐC GIA 2016 - 2017

A. 3; 21



B. 3; 0



1 311

C.  ; 

 3 27 



1

D.  ; 0

3









Câu 49: Hàm số y x  12x 15 có 2 điểm cực trị là A và B. Một nửa của độ

dài đoạn thẳng AB là:

A. 4 65

B. 2 65

C. 1040

D. 520

3

2

Câu 50: Đồ thị hàm số y x  9 x  24x  4 có các điểm cực tiểu và điểm cực đại

lần lượt là  x1; y1  và  x2 ; y2  . Giá trị của biểu thức x1 y2  x2y 1 là:

A. -56

B. 56

C. 136

D. -136

Câu 51: Lập phương trình đường thẳng đi qua hai điểm cực trị của hàm số

3



y x3  4 x 2  3x  1

14

1

14

1

14

1

14

1

A. y   x 

B. y   x 

C. y  x 

D. y  x 

9

3

9

3

9

3

9

3

3

2

Câu 52: Gọi x1 , x2 lần lượt là hai điểm cực trị của hàm số y x  5x  4x  1. Giá



trị của biểu thức y  x1   y  x2  gần với giá trị nào sau đây nhất ?

A. 6

B. 7

C. 8

D. 9

3

2

Câu 53: Toạ độ điểm cực tiểu của đồ thị hàm số y 2 x  3x  12x 1 là:

A.  1;8

B. 2;  19

C.  1; 2

D. 2;  1

Câu 54: Gọi A x 1; y1  và B x 2 ; y2  lần lượt là toạ độ các điểm cực đại và cực tiểu

x1 x2



bằng :

y2 y1

7

7

6

6

A.

B.

C.

D.

13

13

13

13

Câu 55: Gọi A, B là toạ độ 2 điểm cực trị của đồ thị hàm số y  x3  3x  2 C  .



của đồ thị hàm số y  x3  3x2  9 x 1 . Giá trị của biểu thức T 



Độ dài AB là:

A. 2 3

B. 2 5

C. 2 2

Câu 56: Cho hàm số có bảng biến thiên như sau.



D. 5 2



Khẳng định nào sau đây là đúng.

A. Hàm số đã cho có một điểm cực trị tại x  1

B. Giá trị của cực đại là yCD 4 và giá trị của cực tiểu là yCT 0

C. Giá trị của cực đại là yCD  và giá trị của cực tiểu là yCT  

D. Hàm số đã cho không đạt cực trị tại điểm x 1

Câu 57: Cho hàm số có đồ thị như hình vẽ. Khẳng định nào sau đây là đúng.



ĐT: 0934286923



Email: cohangxom1991@gmail.com



CHUYÊN ĐỀ HÀM SỐ LUYỆN THI THPT QUỐC GIA 2016 - 2017



A. Hàm số đã cho đạt cực đại tại x 4 và cực tiểu tại x 2

B. Hàm số đã cho đạt cực đại tại x 0 và cực tiểu tại x 4

C. Giá trị của cực đại là yCD 4 và giá trị của cực tiểu là yCT 2

D. Hàm số đạt cực đại tại điểm x 0 và có giá trị của cực tiểu là yCT 0

Câu 58: Điểm cực đại của đồ thị hàm số y x4  2 x2  3 là:

A. 0;  3

B. 1; 2

C.  1; 2

D. 0;3 

4

2

Câu 59: Điểm cực đại của đồ thị hàm số y  x  8x 1 là:

A. 2;17 

B.  2;17 

C. 0;1

D. 2;17  và  2;17

Câu 60: Số điểm cực đại của đồ thị hàm số y  x4  6 x2  9 là:

A. 0

B. 1

C. 2

D. 3

4

2

Câu 61: Số điểm cực trị của đồ thị hàm số y x  4 x  6 là:

A. 0

B. 1

C. 2

D. 3

4

2

Câu 62: Số điểm cực trị của đồ thị hàm số y  x  6x  9 là

A. 0

B. 1

C. 2

D. 3

1

4



Câu 63: Cho hàm số y  x 4  2 x 2  5 có mấy điểm cực trị có hoành độ lớn hơn

–1?

A. 0

B. 1

C. 2

D. 3

4

2

Câu 64: Cho hàm số y x  x 1. Khẳng định nào sau đây đúng ?

A. Hàm số chỉ có cực đại.

B. Hàm số chỉ có cực tiểu.

C. Hàm số có 1 điểm cực đại và 2 điểm cực tiểu.

D. Hàm số có 1 điểm cực tiểu và 2 điểm cực đại.

Câu 65: Cho hàm số y  x4  6 x 2 15 . Tung độ của điểm cực tiều của hàm số đó

là:

A. 15

B. 24

C. 0

D. 3

1 2

x  1 . Phương trình đường thẳng đi qua 2 điểm

2



Câu 66: Cho hàm số y  x 4 

cực tiểu của hàm số là:

15

16



A. y 



ĐT: 0934286923



7

16



B. x 



1

2



C. y  



1

4



D. y  x  1



Email: cohangxom1991@gmail.com



CHUYÊN ĐỀ HÀM SỐ LUYỆN THI THPT QUỐC GIA 2016 - 2017

Câu 67: Gọi A là điểm cực đại B, C là 2 điểm cực tiểu của hàm số

1

y  x 4  8 x 2  35 . Tọa độ chân đường cao hạ từ A của ABC là:

4

A. 4;  29

B.  2; 7

C. 0;  29

D. 2; 7



Câu 68: Cho hàm số y  x 4  4 x 2 1C  . Toạ độ điểm cực tiểu của (C) là:

A. 0; 0



B. 0;1



C.







 



2;5 và  2;5







D. 1; 0



1

4



Câu 69: Cho hàm số y  x 4  2 x 2  2 C  . Toạ độ điểm cực tiểu của (C) là:

1

1

A.  1;  và   1;  B. 0;  2 

4

4

















C. 2;  2  và  2;  2  D. 0; 2



Câu 70: Cho các hàm số sau: y x 4 11; y  x 4  x 2 12 ; y x 4  2 x 2 3 . Đồ thị

hàm số nhận điểm A 0;1 là điểm cực trị là :

A. (1) và (2)

B. (1) và (3)

C. Chỉ có (3)

D. Cả (1), (2), (3)

2

2

Câu 71: Giả sử hàm số y  x  1 có a điểm cực trị. Hàm số y x4  3 có b

điểm cực trị và hàm số y  x4  4 x2  4 có c điểm cực trị. Tổng a  b  c bằng

A. 5

B. 7

C. 6

D. 4

Câu 72: Gọi A, B, C là tọa độ 3 điểm cực trị của đồ thị hàm số y x4  2 x2 1 .

Chu vi tam giác ABC bằng:

A. 4 2  2

B. 2 2  1

C. 2  2 1

D. 1  2

Câu 73: Điểm cực đại của đồ thị hàm số y x4  4 x 2  1 có tọa độ là ?

A.  2;  5 

B. 0;  1

C.  2;  5 

D.  2;  5 

Câu 74: Điểm cực tiểu của đồ thị hàm số y x4  3x2  4 là ?





A.  





6 9

;  

2

4



B. 0; 4







C.  





6 7

; 

2 4 



D. 1; 2



Câu 75: Đường thẳng đi qua điểm M 1; 4 và điểm cực đại của đồ thị hàm số

y x4  2 x2  4 có phương trình là ?

A. x 4

B. y 4

C. x 1

D. x  2 y  7 0

Câu 76: Hàm số y x4  2 x2  2 đạt cực đại tại x a , đạt cực tiểu tại x b . Tổng

a  b bằng ?

A. 1 hoặc 0.

B. 0 hoặc -1

C. -1 hoặc 2

D. 1 hoặc -1

4

2

Câu 77: Tích giá trị cực đại và cực tiểu của hàm số y x  3x  2 bằng ?

A. 



1

2



ĐT: 0934286923



B. 0



C. 



9

2



D.



1

2



Email: cohangxom1991@gmail.com



CHUYÊN ĐỀ HÀM SỐ LUYỆN THI THPT QUỐC GIA 2016 - 2017

ĐÁP ÁN TRẮC NGHIỆM

01. C

11. C

21. D

31. A

41. D

51. A

61. D

71. A



02. B

12. B

22. C

32. C

42. A

52. B

62. B

72. C



03. C

13. D

23. D

33. B

43. D

53. B

63. C

73. B



ĐT: 0934286923



04. A

14. C

24. A

34. D

44. C

54. C

64. B

74. C



05. D

15. C

25. C

35. B

45. A

55. B

65. A

75. B



06. B

16. B

26. B

36. C

46. B

56. B

66. A

76. D



07. C

17. A

27. D

37. C

47. A

57. D

67. C

77. B



08. A

18. B

28. B

38. C

48. C

58. D

68. B



09. D

10. B

19. A

20. B

29. B

30. A

39. A

40. B

49. B 50. B

59. D

60. C

69. C

70. A



Email: cohangxom1991@gmail.com



CHUYÊN ĐỀ HÀM SỐ LUYỆN THI THPT QUỐC GIA 2016 - 2017

Hướng dẫn giải

3

2

Câu 1: Cho hàm số y 2 x  5x  4 x 1999 . Gọi x1 và x2 lần lượt là hoành độ hai

điểm cực đại và cực tiểu của hàm số. Kết luận nào sau đây là đúng?

1

1

1

C. 2 x1  x2 

D. x1  x2 

3

3

3

 x 1

2

1

2

HD: Ta có y ' 6 x  10 x  5; y ' 0   2 . Do 2  0  x1

; x2 1  2 x1  x2 

x

3

3

3





A. x2  x1 



2

3



B. 2 x2  x1 



Chọn C.

Câu 2: Số điểm cực trị của hàm số y 2 x3  5x 2  4 x 1999 là:

A. 1

B. 2

C. 3

D. 4

HD: Chọn B

Câu 3: Hàm số y 2 x3  3x 2  12x  2016 có hai điểm cực trị lần lượt là A và B.

Kết luận nào sau đây là đúng?

A. A  2; 2035

B. B 2; 2008

C. A  2; 2036

D. B 2; 2009

HD: Chọn C.

Câu 4: Giá trị cực đại của hàm số y 2 x3  5x2  4 x 1999

A.



54001

27



B. 2



C.



54003

27



D. 4



HD: Chọn A

Câu 5: Giá trị cực tiểu của hàm số y 2 x3  3x 2  12x  2016 là:

A. 2006

B. 2007

C. 2008

D. 2009

HD: Chọn D

Câu 6: Hàm số y 3x3  4 x2  x  2016 đạt cực tiểu tại:

A. x 



2

9



B. x 1



C. x 



1

9



D. x 2



HD: Chọn B

Câu 7: Cho hàm số y x3  3x2  9 x  2017 . Gọi x1 và x2 lần lượt có hoành độ tại

hai điểm cực đại và cực tiểu của hàm số. Kết luận nào sau đây là đúng?

A. x1  x2 4

B. x2  x1 3

2

C. x1 x2  3

D.  x1  x2  8

 x 1



 x1x2  3 . Chọn C

HD: y ' 3x 2  6 x  9; y ' 0  

 x  3

Câu 8: Hàm số y  x3  8x 2  13x  1999 đạt cực đại tại:

13

3



A. x 



B. x 1



C. x 



 13

3



D. x 2



HD: Chọn A

Câu 9: Hàm số y x3  10x 2 17x  25 đạt cực tiểu tại:

10

3



A. x 



cB. x 25



C. x 17



17

3



D. x 



HD: Chọn D

Câu 10: Cho hàm số y 2x3  3x 2  12x  2016 . Gọi x1 và x2 lần lượt có hoành độ

tại hai điểm cực đại và cực tiểu của hàm số. Kết luận nào sau đây là đúng?

A. x1  x2 4

B. x2  x1 3

ĐT: 0934286923



Email: cohangxom1991@gmail.com



CHUYÊN ĐỀ HÀM SỐ LUYỆN THI THPT QUỐC GIA 2016 - 2017

2



C. x1 x2  3

D.  x1  x2  8

HD: Chọn B

Câu 11: Hàm số y 3x3  4 x 2  x  258 đạt cực đại tại:

A. x 



2

9



B. x 1



C. x 



1

9



D. x 2



HD: Chọn C

Câu 12: Hàm số y  x3  8x2  13x  1999 đạt cực tiểu tại:

A. x 3



B. x 1



C. x 



1

3



D. x 2



HD: Chọn B

Câu 13: Biết hàm số y x3  6 x2  9 x  2 có 2 điểm cực trị là A x 1; y1  và

B x 2 ; y2  . Nhận định nào sau đây không đúng ?

A. x1  x2 2

B. y1 y 2  4

C. y1  y2

D. AB 2 6

 x 1  

y 2  A 1; 2



HD: Ta có: y ' 3x 2  12x  9; y ' 0  



y  2

 x 3  



B 3;  2 



Ta có AB 2 5 .



Chọn D

Câu 14: Hàm số nào dưới đây có cực đại ?

A. y x4  x2 1



B. y 



x 1

x2



x 2

D. y  x 2  2 x

2

x  2

HD: Với y  x 4  x 2 1 y ' 4x 3  2x=2x 2 x 2  1 chỉ có cực tiểu



C.



Với y 



x 1

3

 y' 

không có cực đại, cực tiểu.

2

x2

x  2



Với y 



x 2

x2  4 x  2



y

'



có cực đại.

2

 x2  2

 x 2  2 



Với y  x 2  2 x  y'



x 1

x2  2x



không có cực đại cực tiểu. Chọn C



Chọn C

Câu 15: Tổng số điểm cực đại của hai hàm số y  f  x  x 4  x 2  3 và

y g x   x 4  x 2  2 là:

A. 1

B. 2

C. 3

D. 4

4

2

3

2

HD: y  x  x  3  y ' 4x  2x 2x 2x  1 có 1 điểm cực đại

Với y  x 4  x 2  2  y '  4x 3  2x  2x 2x 2  1 có 2 điểm cực đại.

Do đó hai hàm số đã cho có 3 điểm cực trị. Chọn C

Câu 16: Tổng số điểm cực tiểu của hai hàm số y  f  x  x3  x 2  3 và

y g x   x 4  x 2  2 là :

A. 1

B. 2

C. 3

D. 4

HD: Chọn B

Câu 17: Cho hai hàm số y  f  x  x3  x 2  3 và y g x  



x 4 3x 2



 x  2 . Tổng

4

2



số điểm cực trị, cực đại, cực tiểu của 2 hàm số lần lượt là:

ĐT: 0934286923



Email: cohangxom1991@gmail.com



CHUYÊN ĐỀ HÀM SỐ LUYỆN THI THPT QUỐC GIA 2016 - 2017

A. 5; 2;3

B. 5;3; 2

C. 4; 2; 2

D. 3;1; 2

3

2

2

HD: Vớin y x  x  3  y' 3x  2x có 1 điểm cực đại, 1 điểm cực tiểu.

x 4 3x 2

Với y  

 x  2  y' x3  3x  1 có 1 điểm cực đại, 2 điểm cực tiểu.

4

2



Do đó hai hàm số đã cho có 5 điểm cực trị, 2 điểm cực đại, 3 điểu cực tiểu.

Chọn A

Chọn A

Câu 18: Cho hàm số y  x3  6 x 2  9 x  4 C  . Toạ độ điểm cực đại của đồ thị

hàm số là:

A. A 1; 8

B. A 3;  4 

C. A 2;  2 

D. A  1;10

HD: Chọn B

Câu 19: Cho hàm số y x3  3x 2  4 C  . Gọi Avà B là toạ độ 2 điểm cực trị của

(C). Diện tích tam giác OAB bằng:

A. 4

B. 8

C. 2

D. 3

 x 0  

y 4  A 0; 4



1

 SOAB  OAOB

.

4 .Chọn

2

y 0  B 2; 0

 x 2  



HD: Ta có y ' 3x 2  6x; y ' 0  



A

Câu 20: Đồ thị hàm số y x3  3x 2  9 x  2 C  có điểm cực đại cực tiểu lần lượt

là  x1 ; y1  và  x2 ; y2  . Tính T x1 y2  x2y 1

A. 4

B. -4

C. 46

D. -46

 x  1  y 7



 x  1



1

HD: Ta cos y ' 3x 2  6x  9; y ' 0  

. Do 1  0   1

 T  4









x

3

y

25

 x 3

2

 2

Chọn B

Câu 21: Cho hàm số y x3  x 2  x 1C  . Khoảng cách từ O đến điểm cực tiểu

của đồ thị hàm số là:



A. 3



B. 2



1105

729



C.



D. 1



 x 1



HD: Ta cos y ' 3x 2  2x-1; y'=0  



=> Cực tiểu A 1; 0  OA 1. Chọn D

 x  1

3





Câu 22: Khẳng định nào sau đây là sai:

A. Hàm số y x3  3x  2 không có cực trị

B. Hàm số y x3  2 x2  x có 2 điểm cực trị

C. Hàm số y x3  6 x 2 12x  2 có cực trị

D. Hàm số y x3 1 không có cực trị.

2

HD: Với y  x3  6x 2 12x  2  y 3x 2  12x  12 3 x  2 0

=> Hàm số đã cho không có cực trị….Chọn C

Câu 23: Giả sử hàm số y x3  3x2  3x  4 có a điểm cực trị, hàm số

y x4  4 x2  2 có b điểm cực trị và hàm số y 



của T a  b  c là:

A. 0

HD: Chọn D

ĐT: 0934286923



B. 3



2x  1

có c điểm cực trị. Giá trị

x 1



C. 2



D. 1



Email: cohangxom1991@gmail.com



CHUYÊN ĐỀ HÀM SỐ LUYỆN THI THPT QUỐC GIA 2016 - 2017

Câu 24: Hàm số y  f  x   x 2  2 x có bao nhiêu điểm cực trị ?

A. 0

B. 1

C. 2

D. 3

HD: Chọn A

Câu 25: Cho hàm số y  f  x   x 4  4 x 2  2 . Chọn phát biểu đúng:

A. Hàm số trên có 1 điểm cực đại và 2 điểm cực tiểu

B. Hàm số trên có 2 điểm cực đại và 1 điểm cực tiểu

C. Hàm số có 1 điểm cực trị là điểm cực đại.

D. Hàm số có 1 điểm cực trị là điểm cực tiểu.

HD: Ta có y '  4x 3  8 x  4 x x 2  2 ; y ' 0  x 0 . Do  1 0 nên hàm số đã cho

chỉ nó một điểm cực trị và là điểm cực đại. Chọn C

Câu 26: Hàm số nào sau đây không có cực trị:

A. y x3  x 2 1

HD: Với y 



B. y 



x 1

x 1



C. y x4  3x3  2



D. y 



x2  x

x 1



2

x 1

 y'

 0  hàm số không có cực trị. Chọn B

2

x 1

 x  1



Câu 27: Hàm số y  f  x  x3  x 2  x  4 đạt cực trị khi :

 x 1

A. 

 x 3



 x 0

B. 

 x  2

3





 x 1

C. 

 x  1

3





 x  1

D.  1

x

3





HD: Chọn D

Câu 28: Cho hàm số y  f  x  3x 4  2 x 2  2 . Chọn phát biểu sai:

A. Hàm số trên có 3 điểm cực trị.

B. Hàm số trên có 2 điểm cực đại và 1 điểm cực tiểu.

C. Hàm số trên có 1 điểm cực đại và 2 điểm cực tiểu.

D. Hàm số có cực đại và cực tiểu.

HD: Chọn B

Câu 29: Cho hàm số y  f  x  2 x3 

A. x 1



1

6



B. x  



5x2

 x  4 đạt cực đại khi:

2



C. x  1



D. x 



1

6



HD: Chọn B

Câu 30: Hàm số y  f  x  x3  3x 1 có phương trình đường thẳng đi qua 2

điểm cực trị là

A. 2 x  y  1 0

B. x  2 y  1 0

C. 2 x  y  1 0

D. x  2 y 1 0

 x 1  

y  1



HD: Ta có y ' 3x 2  3; y ' 0  



A 1;1



 x  1  y 1  B  1;1

Đường thẳng đi qua 2 điểm A, B 2x  y  1 0 Chọn A



Câu 31: Hàm số C  : y x3  2 x 2  x  1 đạt cực trị khi :

 x 1

A.  1

x

3





ĐT: 0934286923



 x  1

B.  1

x

3





Email: cohangxom1991@gmail.com



CHUYÊN ĐỀ HÀM SỐ LUYỆN THI THPT QUỐC GIA 2016 - 2017

 x 3

C. 

 x  1

3





 x 3

D. 

 x  10

3





HD: Chọn A

Câu 32: Cho hàm số C  : y 2 x3  2 x . Hệ thức liên hệ giữa giá trị cực đại (yCĐ)

và giá trị cực tiểu (yCT) của hàm số đã cho là

A. yCT 2 yCĐ

B. 2 yCT 3 yCĐ

C. yCT  yCĐ

D. yCT  yCĐ

HD: Chọn C

Câu 33: Cho hàm số C  : y  x2  x 1 . Hàm số đạt cực trị tại

A. x 1



B. x 



1

2



1

2



C. x  



HD: Chọn B

2

Câu 34: Hàm số C  : y  x 2  2   3 đạt cực đại khi :

A. x   2

B. x  2

C. x 1

HD: Chọn D



D. x  1



D. x 0



x 2  2x  1

x 1

(1). Hàm số đạt cực đại tại x  1

(2). Hàm số có  3xCĐ xCT



Câu 35: Cho hàm số C  : y 



(3). Hàm số nghịch biến trên  ;  1

(4). Hàm số đồng biến trên  1;3

Các phát biểu đúng là:

A. (1),(4)

B. (1),(2)



C. (1),(3)



HD: Tập xác định D  \ 1 . Ta có y ' 



2



x  2x  3

2



 x  1



D. (2),(3)



 x  1



; y ' 0  

 x 3



 xCD  1

.



 xCT 3



Chọn B

Câu 36: Cho hàm số C  : y 2 x 2  x 4 . Chọn phát biểu sai trong các phát biểu

dưới đây:

A. Hàm số đạt cực tiểu tại x 0

B. Hàm số có giá trị cực đại bằng 1.

C. Hàm số có hai cực trị.

D. Điểm cực tiểu của đồ thị hàm số là



0; 0

 x 0



HD: Ta có y ' 4 x  4 x3 4 x 1  x 2 ; y ' 0  

hàm số đã cho không có cực

1

x 

trị.

Chọn C.

Câu 37: Điểm cực đại của đồ thị hàm số y x3  6 x 2  15x  5 là:

A. 5;  105

B.  1;8

C.  1;3

D. 5;  100

HD: Chọn C

Câu 38: Điểm cực đại của đồ thị hàm số y  x3  3x2  5 là

A. 0;5 

B. 0; 0

C. 2;9 

D. 2;5 

HD: Chọn C

Câu 39: Điểm cực tiểu của đồ thị hàm số y x3  2 x 2  x 1 là:

ĐT: 0934286923



Email: cohangxom1991@gmail.com



CHUYÊN ĐỀ HÀM SỐ LUYỆN THI THPT QUỐC GIA 2016 - 2017

A. 1;1



1 31

C.  ; 



B. 1; 0



1 31

D.   ; 



 3 27 



 3 27 



HD: Chọn A

Câu 40: Điểm cực tiểu của đồ thị hàm số y  2 x3  2 x2  2 x  5 là:

1 125

C.  ; 



1 125

B.   ; 



A. 1; 7



 3 27 



D.  1; 7



 3 27 



HD: Chọn D

Câu 41: Giả sử hai điểm A, B lần lượt là cực đại và cực tiểu của đồ thị hàm số

y x3  3x  4 khi đó độ dài đoạn thẳng AB là:

A. 5



B. 3 5



C.



1

5



D. 2 5



HD: Chọn D

1

3



Câu 42: Tìm cực trị của hàm số y  x3 

19

4

6

3

 19

3

C. ycd 

; yct 

6

4



A. ycd  ; yct 



1 2

x  2x  2

2

16

3

B. ycd  ; yct 

9

4

19

4

D. ycd  ; yct 

6

3



HD: Chọn A

Câu 43: Điểm cực tiểu của đồ thị hàm số hàm số y x3  3x2  6 là:

A. x0 0

B. x0 4

C. x0 3

D. x0 2

HD: Chọn D

2

3



Câu 44: Giá trị cực đại của hàm số y   x3  2 x  2 là:

A.



2

3



B. 1



C.



10

3



D. -1



HD: Chọn C

Câu 45: Cho hàm số y  x3  2 x2  x  4 . Tổng giá trị cực đại và cực tiểu của

hàm số là:

1

121

212

C.

D.

3

27

72

 x 1

1

104 212

2



HD: y '  3x  4 x  1 0   1  T y 1  y   4 

. Chọn A

x

27

27

 3

3



1

Câu 46: Cho hàm số y  x3  2 x 2  3x  1 . Khoảng cách giữa 2 điểm cực đại, cực

3



A.



212

27



B.



tiểu là:

A.



2 10

3



B.



2 13

3



C.



2 37

3



1



x 1  

y



HD: Ta có y ' x  4 x  3 0 

3  d



y  1

 x 3  

2



D.



2 31

3



2



2 13

 4

2   

. Chọn B

3

 3

2



Câu 47: Hàm số y x3  3x2  9 x  7 đạt cực đại tại :

A. x  1



B. x 3



 x  1



C. 

 x 3



 x  1

 x 3



D. 



HD: Chọn A

ĐT: 0934286923



Email: cohangxom1991@gmail.com



CHUYÊN ĐỀ HÀM SỐ LUYỆN THI THPT QUỐC GIA 2016 - 2017

Câu 48: Hàm số y  x3  5x2  3x 12 có điểm cực tiểu có tọa độ là:

A. 3; 21



1 311

C.  ; 



B. 3; 0



 3 27 



1

D.  ; 0

3









HD: Chọn C

Câu 49: Hàm số y x3  12x 15 có 2 điểm cực trị là A và B. Một nửa của độ

dài đoạn thẳng AB là:

A. 4 65

B. 2 65

C. 1040

D. 520

y  1

 x 2  



HD: y ' 3x 2  12 0  

 A 2;  1, B  2;31

 x  2  y 31

 AB   4;32   AB 



2



 4 



 322 4 65 



1

AB 2 65 . Chọn B

2



Câu 50: Đồ thị hàm số y x3  9 x2  24x  4 có các điểm cực tiểu và điểm cực đại

lần lượt là  x1 ; y1  và  x2 ; y2  . Giá trị của biểu thức x1 y2  x2y 1 là:

A. -56

B. 56

C. 136

D. -136

y 20

 x 4  



HD: y ' 3x 2  18 x  24; y " 6 x  18; y ' 0  

y 24

 x 2  

+) y "4  6  0  điểm cực tiểu 4; 20  x1 4; y1 20

+) y " 2   6  0  điểm cực đại 2; 24  x2 2; y2 24

Do đó x1 y2  x2y 1 4.24  2.20 56 . Chọn B

Câu 51: Lập phương trình đường thẳng đi qua hai điểm cực trị của hàm số

y x3  4 x 2  3x  1

14

1

A. y   x 

9

3



14

9



B. y   x 



1

3



14

1

x

9

3



C. y 



14

1

x

9

3



D. y 



HD:

Chọn A

Câu 52: Gọi x1 , x2 lần lượt là hai điểm cực trị của hàm số y x3  5x 2  4x  1. Giá

trị của biểu thức y  x1   y  x2  gần với giá trị nào sau đây nhất ?

A. 6

B. 7

C. 8

D. 9

10



x1  x2 



3

HD: y ' 3x2  10x  4 , ta có x1; x2 là 2 nghiệm của y ' 0  

4

x x 

 1 2 3



+)

y  x1   y  x2   x13  5 x12  4 x1  1   x13  5 x22  4 x2  1  x13  x23   5  x12  x22   4  x1  x2   2



10

3

2

 x1  x2   3x1 x2  x1  x2   5   x1  x2   2 x1 x2   4.  2





3

3

  10  2

4 10

4  34

 10 

   3. .  5     2.    y  x1   y  x2  7,185 . Chọn B

3 3

3  3

 3

  3 

5  13

5  13

; x2 

Cách 2: Tính trực tiếp từ x1; x2 là 2 nghiệm của y ' 0  x1

3

2

 5  13 

 5  13 

 y  x1   y  x2   y 

  y 

 7,185 . Chọn B

2

2









Câu 53: Toạ độ điểm cực tiểu của đồ thị hàm số y 2 x3  3x 2  12x 1 là:



ĐT: 0934286923



Email: cohangxom1991@gmail.com



CHUYÊN ĐỀ HÀM SỐ LUYỆN THI THPT QUỐC GIA 2016 - 2017

A.  1;8

B. 2;  19

C.  1; 2

D. 2;  1

HD: Chọn B

Câu 54: Gọi A x 1; y1  và B x 2 ; y2  lần lượt là toạ độ các điểm cực đại và cực tiểu

của đồ thị hàm số y  x3  3x2  9 x 1 . Giá trị của biểu thức T 

A.



7

13



B.



7

13



C.



6

13



x1 x2

bằng :



y2 y1

6

D.

13



HD: Chọn C

Câu 55: Gọi A, B là toạ độ 2 điểm cực trị của đồ thị hàm số y  x3  3x  2 C  .

Độ dài AB là:

A. 2 3

B. 2 5

C. 2 2

D. 5 2

HD: Chọn B

Câu 56: Cho hàm số có bảng biến thiên như sau.



Khẳng định nào sau đây là đúng.

A. Hàm số đã cho có một điểm cực trị tại x  1

B. Giá trị của cực đại là yCD 4 và giá trị của cực tiểu là yCT 0

C. Giá trị của cực đại là yCD  và giá trị của cực tiểu là yCT  

D. Hàm số đã cho không đạt cực trị tại điểm x 1

HD: Từ bảng trên, ta thấy ngay

+) Hàm số đã cho đạt cực đại tại x 1  yCD  y 1 4

+) Hàm số đã cho đạt cực tiểu tại x  1  yCT  y  1 0 . Chọn B

Câu 57: Cho hàm số có đồ thị như hình vẽ. Khẳng định nào sau đây là đúng.



A. Hàm số đã cho đạt cực đại tại x 4 và cực tiểu tại x 2

B. Hàm số đã cho đạt cực đại tại x 0 và cực tiểu tại x 4

C. Giá trị của cực đại là yCD 4 và giá trị của cực tiểu là yCT 2

D. Hàm số đạt cực đại tại điểm x 0 và có giá trị của cực tiểu là yCT 0

ĐT: 0934286923



Email: cohangxom1991@gmail.com



CHUYÊN ĐỀ HÀM SỐ LUYỆN THI THPT QUỐC GIA 2016 - 2017

HDF: Từ bảng trên, ta thấy ngay

+) Hàm số đã cho đạt cực đại tại x 0 và yCD 4

+) Hàm số đã cho đạt cực tiểu tại x 2 và yCT 0 .

Khi đó A sai, B sai, C sai, D đúng. Chọn D

Câu 58: Điểm cực đại của đồ thị hàm số y x4  2 x2  3 là:

A. 0;  3

B. 1; 2

C.  1; 2

D. 0;3 

HD: Chọn D

Câu 59: Điểm cực đại của đồ thị hàm số y  x4  8x2 1 là:

A. 2;17 

B.  2;17

C. 0;1

D. 2;17  và  2;17

HD: Chọn D

Câu 60: Số điểm cực đại của đồ thị hàm số y  x4  6 x2  9 là:

A. 0

B. 1

C. 2

D. 3

HD: Chọn C

Câu 61: Số điểm cực trị của đồ thị hàm số y x4  4 x2  6 là:

A. 0

B. 1

C. 2

D. 3

HD: Chọn D

Câu 62: Số điểm cực trị của đồ thị hàm số y  x4  6x 2  9 là

A. 0

B. 1

C. 2

D. 3

1

4



Câu 63: Cho hàm số y  x 4  2 x 2  5 có mấy điểm cực trị có hoành độ lớn hơn

–1?

A. 0



B. 1



C. 2



D. 3



 x 0



HD: Ta có y '  x3  4x  y ' 0  

. Chọn C

2

x 

Câu 64: Cho hàm số y x4  x2 1. Khẳng định nào sau đây đúng ?

A. Hàm số chỉ có cực đại.

B. Hàm số chỉ có cực tiểu.

C. Hàm số có 1 điểm cực đại và 2 điểm cực tiểu.

D. Hàm số có 1 điểm cực tiểu và 2 điểm cực đại.

HD: Ta có y ' 4 x3  2 x  y ' 0  2 x 2 x 2  1 0  x 0 . Do a  0 nên hàm số chỉ

có cực tiểu. Chọn B

Câu 65: Cho hàm số y  x4  6 x 2 15 . Tung độ của điểm cực tiều của hàm số đó

là:

A. 15

B. 24

C. 0

D. 3

HD: Chọn A

1 2

x  1 . Phương trình đường thẳng đi qua 2 điểm

2



Câu 66: Cho hàm số y  x 4 

cực tiểu của hàm số là:

15

16



7

16



A. y 



B. x 



1

2



C. y  



1

4



D. y  x  1



 x 0

HD: Ta có y ' 4 x  x  

y' 0  

1 . Do a  0 nên 2 cực tiểu của hàm số là

x 



2

1

x 

2

3



ĐT: 0934286923



Email: cohangxom1991@gmail.com